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This lecture note is mainly based on Ch. 5 of Sorger (2015) and Ch. 4 of Stokey, Lucas

and Prescott (1989). For more general explanations of discrete-time infinite-horizon dynamic

programming technique in economics, see these two books, Ch. 6 of Acemoglu (2009) and Ch.

12 of Sundaram (1996).

1 Model Formulation and Terminology

1.1 Two Kinds of Variables and Transition Equation

• State variable (状態変数): this is the kind of variables already determined at the beginning

of each period. After the decision making of an individual, these variables change over

time thorough the transition equation (推移方程式).

Example: Suppose that you hold at units of financial assets today (i.e., the sum of your

all assets: bank deposits, equities, bond, real estate...). This has been already determined

by your past savings. You receive the interest income rtat and the wage income wt. Your

budget constraint is then given by

at+1 − at︸ ︷︷ ︸
savings

= rtat + wt︸ ︷︷ ︸
income flow

− ct︸︷︷︸
consumption

.

Then, once you decide ct, your assets tomorrow, at+1, is accordingly determined. Thus

the budget constraint works as the transition equation with respect to your assets.

• Control variable (制御変数): this is a variable immediately under control. In the above

example, consumption corresponds to this.

• Hereafter, let xt ∈ X ⊆ R+ be the state variable. X is sometimes called the state space.

On the other hand, let ct ∈ C ⊆ R+ denote the control variable.

• It is assumed that xt evolves according to the following transition equation:

xt+1 = g(xt, ct, t),
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where g : X ×C ×N0 → X is the transition function (推移関数) and N0 = {0, 1, 2, . . .} is

the set of nonnegative integers.

1.2 Feasible Path

• Remember the above example of the household budget constraint. Suppose that you can

not borrow any funds from others. If this is the case, your consumption in period t must

satisfy

0 ≤ ct ≤ (1 + rt)at + wt.

That is, your consumption plan in t is feasible if ct ∈ [0, (1 + rt)at + wt] in this case.1

• Let us generalize the above notion. Let G(xt, t) denote the set of feasible values of ct.

Then, we can define the feasible path (実行可能経路).

Definition 1. Given x0 ∈ X, {xt, ct}∞t=0 is the feasible path if

(xt+1, ct) ∈ Ω(xt, t) ≡ {(x′, c) ∈ X × C | c ∈ G(xt, t), x′ = g(xt, c, t)}∀t ∈ N0.

Hereafter, we omit the argument “t” of g(xt, ct, t), G(xt, t) and Ω(xt, t) unless to do so would

cause confusions.

1.3 Objective Function

• Throughout this note, the objective function is

J({ct}∞t=0) = lim
T→∞

T∑
t=0

βtu(ct), β ∈ (0, 1),

where u(c) is the one-period return function. Hereafter we simply express J as
∑∞

t=0 β
tu(ct).

• It is assumed that J is bounded.

In sum, the infinite-horizon discounted problem in discrete time is formulated as

max

∞∑
t=0

βtu(ct)

s.t. (xt+1, ct) ∈ Ω(xt), t = 0, 1, 2, . . . (P)

x0 ∈ X given

1 Caution: In our actual economic life, we can have debts. So, ct can temporally exceeds (1 + rt)at + wt,

which results in the negative value of at+1. Off course, the debt must be paid off in a future date. If we consider

a finite-horizon problem, aT+1 ≥ 0 corresponds to the condition which prohibits default. In an infinite-horizon

problem, however, there is no explicit terminal date. So we need another condition. This issue is discussed in

the analysis of households’ intertemporal consumption-saving decision makings.
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2 Solution Method 1: Application of Optimal Control in Discrete Time

• Let us call the feasible path which is the solution to (P), the optimal path (最適経路).

• If we assume the smoothness and the concavity on u and g, we can use the method of

optimal control in discrete time.

Assumptiom 1. u and g are

1. continuously differentiable, and

2. concave.

• Let gj(x, c) =
∂g(x,c)

∂j , j = x, c. The two properties in the above assumption jointly mean

u(c)− u(c̃) ≥ u′(c)(c− c̃) ∀c, c̃ ∈ C, (1)

g(x, c)− g(x̃, c̃) ≥ gx(x, c)(x− x̃) + gc(x, c)(c− c̃) ∀(x, c), (x̃, c̃) ∈ X × C. (2)

Theorem 1 (Sufficient Condition of the Optimal Path). Suppose that u and g satisfy Assump-

tion 1. If a feasible path {xt, ct}∞t=0 and {λt}∞t=0 (λt ≥ 0) satisfy

u′(ct) + λtgc(xt, ct) = 0 ∀t ∈ N0, (3)

λt − βgx(xt+1, ct+1)λt+1 = 0 ∀t ∈ N0, (4)

lim
t→∞

λtβ
txt+1 = 0, (5)

then it follows that {xt, ct}∞t=0 is an optimal path.

Proof. Exercise 1: Show this theorem using (1) and (2).

• From (3) and (4), we have

u′(ct) = βu′(ct+1)
gc(xt, ct)

gc(xt+1, ct+1)
gx(xt+1, ct+1). (6)

(4) or (6) is called the Euler equation.

• On the other hand, substituting (3) into (5) yields

lim
t→∞

βt u′(ct)

gc(xt, ct)
xt+1 = 0. (7)

(5) or (7) is called the transversality condition (hereafter, TVC).
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2.1 “Heuristic” Derivations of the Euler Equation and TVC

• How do we derive the Euler equation and TVC? → At first consider the following finite-

horizon problem:

max

T∑
t=0

βtu(ct)

s.t. (xt+1, ct) ∈ Ω(xt), t = 0, 1, 2, . . . T,

x0 given, xT+1 ≥ 0.

• The above problem is the finite dimensional optimization. So we can simply look at the

first-order conditions. The Lagrangian associated with this problem is given by

L =

T∑
t=0

βt
[
u(ct) + λt(g(xt, ct)− xt+1)

]
+ µxT+1,

and the first-order-conditions are

∂L/∂ct = 0 : u′(ct) + λtgc(xt, ct) = 0 for t = 0, 1, 2, . . . , T, (8)

∂L/∂xt+1 = 0 : λt = βgx(xt+1, ct+1)λt+1 for t = 0, 1, 2, . . . , T − 1, (9)

∂L/∂xT+1 = 0 : βTλT = µ, (10)

∂L/∂µ = 0 : xT+1 ≥ 0, µ ≥ 0, µxT+1 = 0. (11)

• Substituting (8) into (9), we have

u′(ct) =
gc(xt, ct)

gc(xt+1, ct+1)
gx(xt+1, ct+1)βu

′(ct+1) for t = 0, 1, 2, . . . , T. (12)

On the other hand, substituting (10) into the third condition of (11) yields βTλTxT+1 = 0.

Substituting (8) into this expression, we obtain

βT u′(cT )

gc(xT , cT )
xT+1 = 0. (13)

• Then, taking the limit T → ∞ in (12) and (13), we can obtain (6) and (7).

Caution: On the necessities of the Euler equation and TVC, here we have to note the following

two things:

1. In the above finite-horizon problem, the conditions (12) and (13) give the necessary

condition of the optimization. Moreover, the sufficiency result in Theorem 1 holds true

also in the finite-horizon problem. These two results imply that as long as we consider the

finite-horizon problem, the Euler equation and the TVC are both necessary and sufficient

condition of the optimization if the concavity and smoothness of u and g are ensured.
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2. Consider the following “infinite-horizon counterpart” of L:

L∞ = lim
T→∞

{
T∑
t=0

βt
[
u(ct) + λt(g(xt, ct)− xt+1)

]
+ µxT+1

}

Then, we can find that (8) and (9) are supported as the first-order-conditions even when

T → ∞. This means that the Euler equation is the necessary condition even in the

infinite-horizon problem. However, it is not clear whether or not the TVC in the form of

(7) is necessary in the infinite-horizon problem. This is because we can no longer obtain

the conditions such as (10) or (11) when T → ∞. The necessity of the TVC is therefore

a difficult issue.

Then, in this note we assume that the TVC in the form of (7) is also necessary for the

optimization in the infinite-horizon problem.

2.2 Example: The Ramsey Model in Discrete Time

• Consider the following problem:

max

∞∑
t=0

βtu(ct)

s.t. kt+1 = f(kt) + (1− δ)kt − ct∀t ∈ N0

k0 > 0, given

where ct ≥ 0 is consumption here, kt ≥ 0 is amount of physical capital, and δ ∈ (0, 1) is

the depreciation rate.

• It is assumed that both of u and f are increasing, concave and continuously differentiable.

Exercise 2: Derive the Euler equation and the TVC in the above problem.

3 Solution Method 2: Dynamic Programming

• The “optimal control” approach is a very powerful tool if the smoothness and concavity

of u and g are ensured.

• Unfortunately, we sometimes face

1. Discrete choice problems

2. u or g are not concave

• The dynamic programming does not require such assumptions.
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3.1 Value Function

• Hereafter, we relax the smoothness and concavity given in Assumption 1.

Example: In the discrete-time Ramsey model in Section 2.2, g and G are respectively

given by g(kt, ct) = f(kt) + (1− δ)kt − ct and G(kt) = [0, f(kt) + (1− δ)kt].

• Briefly speaking, the value function (価値関数) is the maximized objective function, de-

fined as follows

Definition 2 (Value function). The value function V ∗ : X → R is defined as

V ∗(x0) = max
{xt,ct}∞t=0

{ ∞∑
t=0

βtu(ct)

∣∣∣∣∣ (xt+1, ct) ∈ Ω(xt)∀t ∈ N0

}
,

• In the discrete-time Ramsey model in Section 2.2, the value function is given by

V ∗(k0) = max
{kt,ct}∞t=0


∞∑
t=0

βtu(ct)

∣∣∣∣∣∣∣ kt+1 = f(kt) + (1− δ)kt − ct, kt ≥ 0, ct ≥ 0︸ ︷︷ ︸
⇔(kt+1,ct)∈Ω(kt)

∀t ∈ N0


By a close look at the above equation, we can find that V ∗(k0) is expressed also as

V ∗(k0) = max
{kt}∞t=1

{ ∞∑
t=0

βtF (kt, kt+1)

∣∣∣∣∣ kt+1 ∈ [0, f(kt) + (1− δ)kt]∀t ∈ N0

}
,

where F (kt, kt+1) ≡ u(f(kt) + (1− δ)kt − kt+1).

• Hereafter we assume that the value function V ∗(x0) in Definition 2 can be also expressed

as

V ∗(x0) = max
{xt}∞t=1

{ ∞∑
t=0

βtF (xt, xt+1)

∣∣∣∣∣ xt+1 ∈ Γ(xt)∀t ∈ N0

}
, (14)

where Γ(xt) is the feasible set of xt+1 ( given by [0, f(kt)+(1−δ)kt] in the above example).

3.2 Principle of Optimality and Bellman Equation

• Given x0 ∈ X, let {x̂t, ĉt}∞t=0 is the optimal path (x̂0 = x0). By its definition,

V ∗(x0) =
∞∑
t=0

βtF (x̂t, x̂t+1)

≥
∞∑
t=0

βtF (xt, xt+1) ∀{xt}∞t=1 ∈ Π(x0) = {{xt}∞t=1|xt+1 ∈ Γ(xt)∀t ∈ N0}
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• Π(x0) is the set of feasible paths of {xt}∞t=1.

Theorem 2. Consider the problem in period τ > 0:

max
{xt}∞t=τ+1

∞∑
t=τ

βt−τF (xt, xt+1)

s.t. xt+1 ∈ Γ(xt)∀t ≥ τ,

xτ = x̂τ .

Then, the optimal path of the problem is {x̂t}∞t=τ .

Proof. Suppose otherwise. Specifically, suppose that the optimal path is given by {x̃t}∞t=τ .

Then,

∞∑
t=τ

βt−τF (x̃t, x̃t+1) ≥
∞∑
t=τ

βt−τF (x̂t, x̂t+1) ⇔
∞∑
t=τ

βtF (x̃t, x̃t+1) ≥
∞∑
t=τ

βtF (x̂t, x̂t+1)

From the initial condition, x̃τ = x̂t. Then, adding
∑τ−1

t=0 βtF (x̂t, x̂t+1) to the both sides, we

have
τ−1∑
t=0

βtF (x̂t, x̂t+1) +

∞∑
t=τ

βtF (x̃t, x̃t+1) ≥ V ∗(x0),

which contradicts to the assumption that {x̂t}∞t=0 is the optimal path in the problem in period

0.

• Theorem 2 is calle the Principle of Optimality.

• Briefly speaking, the dynamic programming is the technique to directly obtain V ∗ by

using this principle of optimality, rather than deriving the optimal path at first.

• At the heart of this approach to the optimization is the Bellman equation defined as

follows:

Definition 3 (Bellman equation). The following functional equation is called the Bellman

equation:

V (x) = max
y∈Γ(x)

{F (x, y) + βV (y)} . (15)
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3.3 Four Important Theorems

Theorem 3. The value function V ∗ defined in (14) satisfies the Bellman equation (15).

Proof. Omitted. See Theorem 4.2 of Stokey and Lucas (1989) or Theorem 5.7 of Sorger (2015).

Theorem 4. Suppose that the function V̂ is the solution to the Bellman equation (15) and

lim
t→∞

βtV̂ (xt) = 0 ∀{xt}∞t=1 ∈ Π(x0),

then V̂ = V ∗ in (14).

Proof. Omitted. See Theorem 4.3 of Stokey and Lucas (1989) or Theorem 5.8 of Sorger (2015)

• In Theorems 3–4, we have established a link between the value function V ∗ and the

solution to the Bellman equation.

→ We can focus on the Bellman equation (15) instead of the original problem (P).

• Now we use V ∗ to characterize the optimal paths.

Theorem 5 (Necessary Condition of the Optimal Path). Suppose that {x̂t}∞t=0 is the optimal

path given x̂0 = x0 ∈ X. Then, V ∗(x̂t) = F (x̂t, x̂t+1) + βV ∗(x̂t+1) for all t ∈ N0.

Proof. At first we will show that V ∗(x̂t) =
∑∞

n=t β
n−tF (x̂n, x̂n+1) for all t ∈ N0. The proof is

by induction.

1. For t = 0, this is straightforward from the definition of V ∗(x0) in (14).

2. Suppose that V ∗(x̂t) =
∑∞

n=t β
n−tF (x̂n, x̂n+1) for a period, say, t. Then,

V ∗(x̂t) = F (x̂t, x̂t+1) + β
∞∑

n=t+1

βn−(t+1)F (x̂n, x̂n+1).

3. We will establish that it is also true for t+ 1. By the principle of optimality in Theorem

(2),

V ∗(x̂t) ≥ F (x̂t, x̂t+1) + β
∞∑

n=t+1

βn−(t+1)F (xn, xn+1) (where xn+1 = x̂n+1)

⇔
∞∑

n=t+1

βn−(t+1)F (x̂n, x̂n+1) ≥
∞∑

n=t+1

βn−(t+1)F (xn, xn+1)

for all {xn}∞n=t+2 ∈ Π(x̂t+1). This implies that V ∗(x̂t+1) =
∑∞

n=t+1 β
n−(t+1)F (x̂n, x̂n+1).

8



Thus, V ∗(x̂t) =
∑∞

n=t β
n−tF (x̂n, x̂n+1) for all t ∈ N0. Then,

V ∗(x̂t) = F (x̂t, x̂t+1) + β
∞∑

n=t+1

βn−(t+1)F (x̂n, x̂n+1)

= F (x̂t, x̂t+1) + βV ∗(x∗t+1).

We have established the proof.

• The next theorem provides a partial converse to Theorem 5.

Theorem 6 (Sufficient Condition of the Optimal Path). Suppose that {xt}∞t=0 is the feasible

path from x0, i.e., {xt}∞t=1 ∈ Π(x0). Then, if {xt}∞t=0 satisfies

V ∗(xt) = F (xt, xt+1) + βV ∗(xt+1), (16)

and

lim
t→∞

βtV ∗(xt) = 0, (17)

then, {xt}∞t=0 is the optimal path.

Proof. From (16) ,

V ∗(x0) =

n∑
t=0

βtF (xt, xt+1) + βnV ∗(xn+1)

Then, taking the limit n → ∞ and using (17), we have V ∗(x0) =
∑∞

t=0 β
tF (xt, xt+1).

• Note that these theorems do not require that the optimization problem satisfies any

concavity assumptions.

3.4 Policy Function

• We define the following function:

Definition 4 (Policy function). h : X → X is called the policy function (政策関数) if

h(x) = arg max
y∈Γ(x)

{F (x, y) + βV (y)}
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• If we can obtain the value function V ∗ from the Bellman equation, we can restate the

optimal path {x̂t}∞t=1 in the following recursive form:

∀x0 ∈ X, x̂t+1 = h(x̂t), t = 0, 1, 2, . . . (18)

• In summary

– Theorems 3 and 4 → V = V ∗ under the boundary condition limn→∞ βnV (xn) = 0.

→ We can focus on the Bellman equation (15) to obtain V ∗, instead of the original

problem (P).

– Theorems 5 and 6 → Once V ∗ is obtained, the optimal path {x̂t}∞t=0 is accordingly

obtained by x̂t+1 = h(x̂t) and the boundary condition, limn→∞ βnV (x̂n) = 0.

• Conversely, we have to obtain the value function from the Bellman equation.

• How?

– Guess and verify

– Value function iteration
. . .

3.5 Convergence of Value Function

• Given any V , define T by

T (V )(x) = max
x′∈Γ(x)

{f(x, x′) + βV (x′)}. (19)

T is called the Bellman operator.

– T : C(X) → C(X), where C(X) is a space of continuous function on X.

• At first, arbitrarily choose a function, say, V0(x) ∈ C(X), and substitute this into the

right-hand-side of (19) for V .

• Then, in (19), the operator T gives the new function, say, V1(x).

• Substitute V1 into the RHS of (19) for V .

→ the functional sequence, {Vj(x)}∞j=0 is generated by the Bellman operator.

• Therefore, if Vj(x) uniformly converges to V ∗(x), we can obtain the value function.

(∗) In Theorem 4.6 of Stokey and Lucas (1989, Ch. 4), it is shown that the operator

T : C(X) → C(X) is a contraction mapping, which in turn shows that

T (V ∗) = V ∗, lim
j→∞

T j(V0) = V ∗∀V0 ∈ C(X).

(Proof is omitted here) Then, Vj uniformly converges to V ∗.
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