Infinite-horizon Problems in Discrete Time

Ryoji Ohdoi

Dept. of Industrial Engineering and Economics, Tokyo Tech

revised on June 27, 2016

This lecture note is mainly based on Ch. 5 of Sorger (2015) and Ch. 4 of Stokey, Lucas and Prescott (1989). For more general explanations of discrete-time infinite-horizon dynamic programming technique in economics, see these two books, Ch. 6 of Acemoglu (2009) and Ch. 12 of Sundaram (1996).

1 Model Formulation and Terminology

1.1 Two Kinds of Variables and Transition Equation

• *State variable* (状態変数): this is the kind of variables already determined at the beginning of each period. After the decision making of an individual, these variables change over time thorough the *transition equation* (推移方程式).

Example: Suppose that you hold a_t units of financial assets today (i.e., the sum of your all assets: bank deposits, equities, bond, real estate...). This has been already determined by your past savings. You receive the interest income $r_t a_t$ and the wage income w_t . Your budget constraint is then given by

$$\underbrace{a_{t+1} - a_t}_{\text{savings}} = \underbrace{r_t a_t + w_t}_{\text{income flow}} - \underbrace{c_t}_{\text{consumption}}$$

Then, once you decide c_t , your assets tomorrow, a_{t+1} , is accordingly determined. Thus the budget constraint works as the transition equation with respect to your assets.

- *Control variable* (制御変数): this is a variable immediately under control. In the above example, consumption corresponds to this.
- Hereafter, let $x_t \in X \subseteq \mathbb{R}_+$ be the state variable. X is sometimes called the *state space*. On the other hand, let $c_t \in C \subseteq \mathbb{R}_+$ denote the control variable.
- It is assumed that x_t evolves according to the following transition equation:

$$x_{t+1} = g(x_t, c_t, t),$$

where $g: X \times C \times \mathbb{N}_0 \to X$ is the transition function (**推移**関数) and $\mathbb{N}_0 = \{0, 1, 2, ...\}$ is the set of nonnegative integers.

1.2 Feasible Path

• Remember the above example of the household budget constraint. Suppose that you can not borrow any funds from others. If this is the case, your consumption in period t must satisfy

$$0 \le c_t \le (1+r_t)a_t + w_t.$$

That is, your consumption plan in t is feasible if $c_t \in [0, (1+r_t)a_t + w_t]$ in this case.¹

• Let us generalize the above notion. Let $\mathcal{G}(x_t, t)$ denote the set of feasible values of c_t .

Then, we can define the *feasible path* (実行可能経路).

Definition 1. Given $x_0 \in X$, $\{x_t, c_t\}_{t=0}^{\infty}$ is the feasible path if

$$(x_{t+1}, c_t) \in \Omega(x_t, t) \equiv \{ (x', c) \in X \times C \mid c \in \mathcal{G}(x_t, t), x' = g(x_t, c, t) \} \forall t \in \mathbb{N}_0$$

Hereafter, we omit the argument "t" of $g(x_t, c_t, t)$, $\mathcal{G}(x_t, t)$ and $\Omega(x_t, t)$ unless to do so would cause confusions.

1.3 Objective Function

• Throughout this note, the objective function is

$$J(\{c_t\}_{t=0}^{\infty}) = \lim_{T \to \infty} \sum_{t=0}^{T} \beta^t u(c_t), \ \beta \in (0,1),$$

where u(c) is the one-period return function. Hereafter we simply express J as $\sum_{t=0}^{\infty} \beta^t u(c_t)$.

• It is assumed that J is bounded.

In sum, the infinite-horizon discounted problem in discrete time is formulated as

$$\max \sum_{t=0}^{\infty} \beta^{t} u(c_{t})$$

s.t. $(x_{t+1}, c_{t}) \in \Omega(x_{t}), \quad t = 0, 1, 2, ...$ (P)
 $x_{0} \in X$ given

¹ Caution: In our actual economic life, we can have debts. So, c_t can temporally exceeds $(1 + r_t)a_t + w_t$, which results in the negative value of a_{t+1} . Off course, the debt must be paid off in a future date. If we consider a finite-horizon problem, $a_{T+1} \ge 0$ corresponds to the condition which prohibits default. In an infinite-horizon problem, however, there is no explicit terminal date. So we need another condition. This issue is discussed in the analysis of households' intertemporal consumption-saving decision makings.

2 Solution Method 1: Application of Optimal Control in Discrete Time

- Let us call the feasible path which is the solution to (P), the *optimal path* (最適経路).
- If we assume the smoothness and the concavity on u and g, we can use the method of optimal control in discrete time.

Assumption 1. u and g are

- 1. continuously differentiable, and
- 2. concave.
- Let $g_j(x,c) = \frac{\partial g(x,c)}{\partial j}$, j = x, c. The two properties in the above assumption jointly mean

$$u(c) - u(\tilde{c}) \ge u'(c)(c - \tilde{c}) \ \forall c, \tilde{c} \in C,$$
(1)

$$g(x,c) - g(\tilde{x},\tilde{c}) \ge g_x(x,c)(x-\tilde{x}) + g_c(x,c)(c-\tilde{c}) \ \forall (x,c), (\tilde{x},\tilde{c}) \in X \times C.$$
(2)

Theorem 1 (Sufficient Condition of the Optimal Path). Suppose that u and g satisfy Assumption 1. If a feasible path $\{x_t, c_t\}_{t=0}^{\infty}$ and $\{\lambda_t\}_{t=0}^{\infty}$ $(\lambda_t \ge 0)$ satisfy

$$u'(c_t) + \lambda_t g_c(x_t, c_t) = 0 \ \forall t \in \mathbb{N}_0, \tag{3}$$

$$\lambda_t - \beta g_x(x_{t+1}, c_{t+1}) \lambda_{t+1} = 0 \ \forall t \in \mathbb{N}_0, \tag{4}$$

$$\lim_{t \to \infty} \lambda_t \beta^t x_{t+1} = 0, \tag{5}$$

then it follows that $\{x_t, c_t\}_{t=0}^{\infty}$ is an optimal path.

Proof. Exercise 1: Show this theorem using (1) and (2).

• From (3) and (4), we have

$$u'(c_t) = \beta u'(c_{t+1}) \frac{g_c(x_t, c_t)}{g_c(x_{t+1}, c_{t+1})} g_x(x_{t+1}, c_{t+1}).$$
(6)

(4) or (6) is called the *Euler equation*.

• On the other hand, substituting (3) into (5) yields

$$\lim_{t \to \infty} \beta^t \frac{u'(c_t)}{g_c(x_t, c_t)} x_{t+1} = 0.$$
(7)

(5) or (7) is called the transversality condition (hereafter, TVC).

2.1 "Heuristic" Derivations of the Euler Equation and TVC

• How do we derive the Euler equation and TVC? → At first consider the following finitehorizon problem:

$$\max \sum_{t=0}^{T} \beta^{t} u(c_{t})$$

s.t. $(x_{t+1}, c_{t}) \in \Omega(x_{t}), t = 0, 1, 2, \dots T,$
 x_{0} given, $x_{T+1} \ge 0.$

• The above problem is the finite dimensional optimization. So we can simply look at the first-order conditions. The Lagrangian associated with this problem is given by

$$L = \sum_{t=0}^{T} \beta^{t} \Big[u(c_{t}) + \lambda_{t}(g(x_{t}, c_{t}) - x_{t+1}) \Big] + \mu x_{T+1},$$

and the first-order-conditions are

$$\partial L/\partial c_t = 0: \quad u'(c_t) + \lambda_t g_c(x_t, c_t) = 0 \quad \text{for } t = 0, 1, 2, \dots, T,$$
(8)

$$\partial L/\partial x_{t+1} = 0$$
: $\lambda_t = \beta g_x(x_{t+1}, c_{t+1})\lambda_{t+1}$ for $t = 0, 1, 2, \dots, T-1$, (9)

$$\partial L/\partial x_{T+1} = 0: \quad \beta^T \lambda_T = \mu, \tag{10}$$

$$\partial L/\partial \mu = 0: \quad x_{T+1} \ge 0, \mu \ge 0, \mu x_{T+1} = 0.$$
 (11)

• Substituting (8) into (9), we have

$$u'(c_t) = \frac{g_c(x_t, c_t)}{g_c(x_{t+1}, c_{t+1})} g_x(x_{t+1}, c_{t+1}) \beta u'(c_{t+1}) \quad \text{for } t = 0, 1, 2, \dots, T.$$
(12)

On the other hand, substituting (10) into the third condition of (11) yields $\beta^T \lambda_T x_{T+1} = 0$. Substituting (8) into this expression, we obtain

$$\beta^T \frac{u'(c_T)}{g_c(x_T, c_T)} x_{T+1} = 0.$$
(13)

• Then, taking the limit $T \to \infty$ in (12) and (13), we can obtain (6) and (7).

Caution: On the necessities of the Euler equation and TVC, here we have to note the following two things:

1. In the above finite-horizon problem, the conditions (12) and (13) give the necessary condition of the optimization. Moreover, the sufficiency result in Theorem 1 holds true also in the finite-horizon problem. These two results imply that as long as we consider the finite-horizon problem, the Euler equation and the TVC are both necessary and sufficient condition of the optimization if the concavity and smoothness of u and g are ensured.

2. Consider the following "infinite-horizon counterpart" of L:

$$L_{\infty} = \lim_{T \to \infty} \left\{ \sum_{t=0}^{T} \beta^t \left[u(c_t) + \lambda_t (g(x_t, c_t) - x_{t+1}) \right] + \mu x_{T+1} \right\}$$

Then, we can find that (8) and (9) are supported as the first-order-conditions even when $T \to \infty$. This means that the Euler equation is the necessary condition even in the infinite-horizon problem. However, it is not clear whether or not the TVC in the form of (7) is necessary in the infinite-horizon problem. This is because we can no longer obtain the conditions such as (10) or (11) when $T \to \infty$. The necessity of the TVC is therefore a difficult issue.

Then, in this note we assume that the TVC in the form of (7) is also necessary for the optimization in the infinite-horizon problem.

2.2 Example: The Ramsey Model in Discrete Time

• Consider the following problem:

$$\max \sum_{t=0}^{\infty} \beta^{t} u(c_{t})$$

s.t. $k_{t+1} = f(k_{t}) + (1-\delta)k_{t} - c_{t} \forall t \in \mathbb{N}_{0}$
 $k_{0} > 0$, given

where $c_t \ge 0$ is consumption here, $k_t \ge 0$ is amount of physical capital, and $\delta \in (0, 1)$ is the depreciation rate.

• It is assumed that both of u and f are increasing, concave and continuously differentiable.

Exercise 2: Derive the Euler equation and the TVC in the above problem.

3 Solution Method 2: Dynamic Programming

- The "optimal control" approach is a very powerful tool if the smoothness and concavity of *u* and *g* are ensured.
- Unfortunately, we sometimes face
 - 1. Discrete choice problems
 - 2. u or g are not concave
- The dynamic programming does not require such assumptions.

3.1 Value Function

• Hereafter, we relax the smoothness and concavity given in Assumption 1.

Example: In the discrete-time Ramsey model in Section 2.2, g and \mathcal{G} are respectively given by $g(k_t, c_t) = f(k_t) + (1 - \delta)k_t - c_t$ and $\mathcal{G}(k_t) = [0, f(k_t) + (1 - \delta)k_t]$.

• Briefly speaking, the *value function* (価値関数) is the maximized objective function, defined as follows

Definition 2 (Value function). The value function $V^* : X \to \mathbb{R}$ is defined as

$$V^{*}(x_{0}) = \max_{\{x_{t}, c_{t}\}_{t=0}^{\infty}} \left\{ \sum_{t=0}^{\infty} \beta^{t} u(c_{t}) \mid (x_{t+1}, c_{t}) \in \Omega(x_{t}) \forall t \in \mathbb{N}_{0} \right\},\$$

• In the discrete-time Ramsey model in Section 2.2, the value function is given by

$$V^{*}(k_{0}) = \max_{\{k_{t}, c_{t}\}_{t=0}^{\infty}} \left\{ \sum_{t=0}^{\infty} \beta^{t} u(c_{t}) \mid \underbrace{k_{t+1} = f(k_{t}) + (1-\delta)k_{t} - c_{t}, k_{t} \ge 0, c_{t} \ge 0}_{\Leftrightarrow (k_{t+1}, c_{t}) \in \Omega(k_{t})} \forall t \in \mathbb{N}_{0} \right\}$$

By a close look at the above equation, we can find that $V^*(k_0)$ is expressed also as

$$V^*(k_0) = \max_{\{k_t\}_{t=1}^{\infty}} \left\{ \sum_{t=0}^{\infty} \beta^t F(k_t, k_{t+1}) \ \middle| \ k_{t+1} \in [0, f(k_t) + (1-\delta)k_t] \forall t \in \mathbb{N}_0 \right\},$$

where $F(k_t, k_{t+1}) \equiv u(f(k_t) + (1 - \delta)k_t - k_{t+1}).$

• Hereafter we assume that the value function $V^*(x_0)$ in Definition 2 can be also expressed as

$$V^{*}(x_{0}) = \max_{\{x_{t}\}_{t=1}^{\infty}} \left\{ \sum_{t=0}^{\infty} \beta^{t} F(x_{t}, x_{t+1}) \ \middle| \ x_{t+1} \in \Gamma(x_{t}) \forall t \in \mathbb{N}_{0} \right\},$$
(14)

where $\Gamma(x_t)$ is the feasible set of x_{t+1} (given by $[0, f(k_t) + (1-\delta)k_t]$ in the above example).

3.2 Principle of Optimality and Bellman Equation

• Given $x_0 \in X$, let $\{\hat{x}_t, \hat{c}_t\}_{t=0}^{\infty}$ is the optimal path $(\hat{x}_0 = x_0)$. By its definition,

$$V^*(x_0) = \sum_{t=0}^{\infty} \beta^t F(\hat{x}_t, \hat{x}_{t+1})$$

$$\geq \sum_{t=0}^{\infty} \beta^t F(x_t, x_{t+1}) \ \forall \{x_t\}_{t=1}^{\infty} \in \Pi(x_0) = \{\{x_t\}_{t=1}^{\infty} | x_{t+1} \in \Gamma(x_t) \forall t \in \mathbb{N}_0\}$$

• $\Pi(x_0)$ is the set of feasible paths of $\{x_t\}_{t=1}^{\infty}$.

Theorem 2. Consider the problem in period $\tau > 0$:

$$\max_{\{x_t\}_{t=\tau+1}^{\infty}} \sum_{t=\tau}^{\infty} \beta^{t-\tau} F(x_t, x_{t+1})$$

s.t. $x_{t+1} \in \Gamma(x_t) \forall t \ge \tau,$
 $x_{\tau} = \hat{x}_{\tau}.$

Then, the optimal path of the problem is $\{\hat{x}_t\}_{t=\tau}^{\infty}$.

Proof. Suppose otherwise. Specifically, suppose that the optimal path is given by $\{\tilde{x}_t\}_{t=\tau}^{\infty}$. Then,

$$\sum_{t=\tau}^{\infty} \beta^{t-\tau} F(\tilde{x}_t, \tilde{x}_{t+1}) \ge \sum_{t=\tau}^{\infty} \beta^{t-\tau} F(\hat{x}_t, \hat{x}_{t+1}) \Leftrightarrow \sum_{t=\tau}^{\infty} \beta^t F(\tilde{x}_t, \tilde{x}_{t+1}) \ge \sum_{t=\tau}^{\infty} \beta^t F(\hat{x}_t, \hat{x}_{t+1})$$

From the initial condition, $\tilde{x}_{\tau} = \hat{x}_t$. Then, adding $\sum_{t=0}^{\tau-1} \beta^t F(\hat{x}_t, \hat{x}_{t+1})$ to the both sides, we have

$$\sum_{t=0}^{\tau-1} \beta^t F(\hat{x}_t, \hat{x}_{t+1}) + \sum_{t=\tau}^{\infty} \beta^t F(\tilde{x}_t, \tilde{x}_{t+1}) \ge V^*(x_0),$$

which contradicts to the assumption that $\{\hat{x}_t\}_{t=0}^{\infty}$ is the optimal path in the problem in period 0.

- Theorem 2 is calle the *Principle of Optimality*.
- Briefly speaking, the dynamic programming is the technique to *directly* obtain V^* by using this principle of optimality, rather than deriving the optimal path at first.
- At the heart of this approach to the optimization is the *Bellman equation* defined as follows:

Definition 3 (Bellman equation). The following functional equation is called the Bellman equation:

$$V(x) = \max_{y \in \Gamma(x)} \{F(x, y) + \beta V(y)\}.$$
 (15)

Theorem 3. The value function V^* defined in (14) satisfies the Bellman equation (15). Proof. Omitted. See Theorem 4.2 of Stokey and Lucas (1989) or Theorem 5.7 of Sorger (2015).

Theorem 4. Suppose that the function \hat{V} is the solution to the Bellman equation (15) and $\lim_{t \to \infty} \beta^t \hat{V}(x_t) = 0 \ \forall \{x_t\}_{t=1}^{\infty} \in \Pi(x_0),$

then $\hat{V} = V^*$ in (14).

Proof. Omitted. See Theorem 4.3 of Stokey and Lucas (1989) or Theorem 5.8 of Sorger (2015) \Box

- In Theorems 3–4, we have established a link between the value function V^* and the solution to the Bellman equation.
 - \rightarrow We can focus on the Bellman equation (15) instead of the original problem (P).
- Now we use V^* to characterize the optimal paths.

Theorem 5 (Necessary Condition of the Optimal Path). Suppose that $\{\hat{x}_t\}_{t=0}^{\infty}$ is the optimal path given $\hat{x}_0 = x_0 \in X$. Then, $V^*(\hat{x}_t) = F(\hat{x}_t, \hat{x}_{t+1}) + \beta V^*(\hat{x}_{t+1})$ for all $t \in \mathbb{N}_0$.

Proof. At first we will show that $V^*(\hat{x}_t) = \sum_{n=t}^{\infty} \beta^{n-t} F(\hat{x}_n, \hat{x}_{n+1})$ for all $t \in \mathbb{N}_0$. The proof is by induction.

- 1. For t = 0, this is straightforward from the definition of $V^*(x_0)$ in (14).
- 2. Suppose that $V^*(\hat{x}_t) = \sum_{n=t}^{\infty} \beta^{n-t} F(\hat{x}_n, \hat{x}_{n+1})$ for a period, say, t. Then,

$$V^*(\hat{x}_t) = F(\hat{x}_t, \hat{x}_{t+1}) + \beta \sum_{n=t+1}^{\infty} \beta^{n-(t+1)} F(\hat{x}_n, \hat{x}_{n+1}).$$

3. We will establish that it is also true for t + 1. By the principle of optimality in Theorem (2),

$$V^{*}(\hat{x}_{t}) \geq F(\hat{x}_{t}, \hat{x}_{t+1}) + \beta \sum_{n=t+1}^{\infty} \beta^{n-(t+1)} F(x_{n}, x_{n+1}) \quad \text{(where } x_{n+1} = \hat{x}_{n+1})$$
$$\Leftrightarrow \sum_{n=t+1}^{\infty} \beta^{n-(t+1)} F(\hat{x}_{n}, \hat{x}_{n+1}) \geq \sum_{n=t+1}^{\infty} \beta^{n-(t+1)} F(x_{n}, x_{n+1})$$

for all $\{x_n\}_{n=t+2}^{\infty} \in \Pi(\hat{x}_{t+1})$. This implies that $V^*(\hat{x}_{t+1}) = \sum_{n=t+1}^{\infty} \beta^{n-(t+1)} F(\hat{x}_n, \hat{x}_{n+1})$.

Thus, $V^*(\hat{x}_t) = \sum_{n=t}^{\infty} \beta^{n-t} F(\hat{x}_n, \hat{x}_{n+1})$ for all $t \in \mathbb{N}_0$. Then,

$$V^*(\hat{x}_t) = F(\hat{x}_t, \hat{x}_{t+1}) + \beta \sum_{n=t+1}^{\infty} \beta^{n-(t+1)} F(\hat{x}_n, \hat{x}_{n+1})$$
$$= F(\hat{x}_t, \hat{x}_{t+1}) + \beta V^*(x^*_{t+1}).$$

We have established the proof.

• The next theorem provides a partial converse to Theorem 5.

Theorem 6 (Sufficient Condition of the Optimal Path). Suppose that $\{x_t\}_{t=0}^{\infty}$ is the feasible path from x_0 , i.e., $\{x_t\}_{t=1}^{\infty} \in \Pi(x_0)$. Then, if $\{x_t\}_{t=0}^{\infty}$ satisfies

$$V^*(x_t) = F(x_t, x_{t+1}) + \beta V^*(x_{t+1}), \tag{16}$$

and

$$\lim_{t \to \infty} \beta^t V^*(x_t) = 0, \tag{17}$$

then, $\{x_t\}_{t=0}^{\infty}$ is the optimal path.

Proof. From (16),

$$V^*(x_0) = \sum_{t=0}^n \beta^t F(x_t, x_{t+1}) + \beta^n V^*(x_{n+1})$$

Then, taking the limit $n \to \infty$ and using (17), we have $V^*(x_0) = \sum_{t=0}^{\infty} \beta^t F(x_t, x_{t+1})$.

• Note that these theorems do not require that the optimization problem satisfies any concavity assumptions.

3.4 Policy Function

• We define the following function:

Definition 4 (Policy function). $h: X \to X$ is called the policy function (政策関数) if

$$h(x) = \arg \max_{y \in \Gamma(x)} \{F(x, y) + \beta V(y)\}$$

• If we can obtain the value function V^* from the Bellman equation, we can restate the optimal path $\{\hat{x}_t\}_{t=1}^{\infty}$ in the following recursive form:

$$\forall x_0 \in X, \quad \hat{x}_{t+1} = h(\hat{x}_t), \quad t = 0, 1, 2, \dots$$
(18)

- In summary
 - Theorems 3 and $4 \to V = V^*$ under the boundary condition $\lim_{n\to\infty} \beta^n V(x_n) = 0$. \to We can focus on the Bellman equation (15) to obtain V^* , instead of the original problem (P).
 - Theorems 5 and 6 \rightarrow Once V^* is obtained, the optimal path $\{\hat{x}_t\}_{t=0}^{\infty}$ is accordingly obtained by $\hat{x}_{t+1} = h(\hat{x}_t)$ and the boundary condition, $\lim_{n\to\infty} \beta^n V(\hat{x}_n) = 0$.
- Conversely, we have to obtain the value function from the Bellman equation.
- How?
 - Guess and verify
 - Value function iteration

3.5 Convergence of Value Function

• Given any V, define T by

$$T(V)(x) = \max_{x' \in \Gamma(x)} \{ f(x, x') + \beta V(x') \}.$$
(19)

T is called the Bellman operator.

 $-T: C(X) \to C(X)$, where C(X) is a space of continuous function on X.

- At first, arbitrarily choose a function, say, $V_0(x) \in C(X)$, and substitute this into the right-hand-side of (19) for V.
- Then, in (19), the operator T gives the new function, say, $V_1(x)$.
- Substitute V_1 into the RHS of (19) for V.
 - \rightarrow the functional sequence, $\{V_j(x)\}_{j=0}^{\infty}$ is generated by the Bellman operator.
- Therefore, if V_j(x) uniformly converges to V^{*}(x), we can obtain the value function.
 (*) In Theorem 4.6 of Stokey and Lucas (1989, Ch. 4), it is shown that the operator T : C(X) → C(X) is a contraction mapping, which in turn shows that

$$T(V^*) = V^*, \quad \lim_{j \to \infty} T^j(V_0) = V^* \forall V_0 \in C(X).$$

(Proof is omitted here) Then, V_j uniformly converges to V^* .

References

- [1] Acemoglu, D. (2009) Introduction to Modern Economic Growth, Princeton University Press.
- [2] Sorger G. (2015) Dynamic Economic Analysis, Cambridge University Press.
- [3] Stokey, N. L., R. E. Lucas Jr., and E. Prescott (1989) *Recursive Methods in Economic Dynamics*, Harvard University Press.
- [4] Sundaram, R. K. (1996) A First Course in Optimization Theory, Cambridge University Press.