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Note: For more general explanations of optimal control problems in economics, see, for
instance, Kamien and Schwartz (1981), Mathematical Appendix of Barro and Sala-i-Martin
(2004) and Acemoglu (2009, Ch.7). This note is heavily influenced by theirs and borrows much
from their insights.

1 Finite-horizon Optimal Control

The canonical continuous-time optimization problem is given by:

T
max J:/O F(xz(t),c(t),t)dt

where
e J is the objective functional, while F(-) is the one-period return function.

e c:[0,T] - C C Ry is called the control variable. It can be a vector. This kind of

variables is immediately under the control of the decision maker.

e On the other hand, x : [0,7] — X C R, is called the state variable. It can be a vector.

This kind of variables is determined only indirectly thorough

&(t) = g(x(t), c(t)),

where the above equation is called the transition equation. A Solution to the problem

(P) is called the optimal path, or the optimal trajectory.

1.1 Pontryagin’s Maximum Principle
Assumptiom 1. Both of F' and g are continuously differentiable.

Define the following Hamiltonian:



where A(t) > 0 is called the costate variable or the adjoint variable. Note that since F' and g
are continuously differentiable, so is H.
To simplify notation, hereafter we let H,, H. and H) denote the partial derivatives of H

with respect to x, ¢ and A, respectively:

Ha e a0 = ZHEONT,
A
H
Hr.conn) = o000,
Hy(z,c,\t) = aH(:%;,A,n’

Theorem 1 (Simplified Maximum Principle). Consider the problem (P). Suppose that
this problem has an interior continuous solution c*(t) and the corresponding interior continuous
path of the state variable x*(t). Then, there exists A\(t) > 0 such that x*(t) and c*(t) satisfy

the following conditions:

H (z*(t),c*(t), A(t),t) =0 Vte[0,T], (2)
At) = —H(x*(t),c* (t), A\(t),t) Vt € [0,T], (3)
x(t) = Ha(x*(t), c*(t), A(t),t) VYt e [0,T], (4)
and the following terminal condition:
z*(T) >0, X(T) >0, N(T)z*(T) = 0. (5)

Proof. Take an arbitrary continuous function ~(¢) and € be a real number. Then, a variation

of the function ¢*(t) is defined by
c(t,e) = c*(t) + ev(b).

We assume that ¢ is sufficiently small such that c(t, ) is feasible. By its definition,
c(t,0) = c*(t)Vt € [0, T7.

Let us also define x(t,e) as the path of the state variable corresponding to the path of

control variable c(t,e). We assume that also x(t,¢) is feasible: i.e., x(t, ) satisfies

i(t ) <z dmg};”) — g(x(t,0), clt,2)). (6)

Since the initial state is historically given, z(0,¢) = x(0) must hold. Then,
x(t,0) = z*(¢t)vt € [0, T).

Now we can define



Since (6) holds for all ¢ € [0, 7], we can verify that it follows that for any A(¢),

T
/0 A(O)lg(x(t,€), clt, €)) — i(t,€)] = 0. (s)

Adding (8) to (7) yields:

T

{Ple,et) + A0 [g(@(t,e),elt,2)) — (t,2)] pat

T

9=
Ji A

H Lc(t€), A(E), t) — )\(t)j;(t,a)}dt. 9)

Integrating the term A(¢)Z(t¢,e) by parts, we obtain

T T
/ NB)a(t, €)dt = \(T)a (T, €) — A0)2(0) — / 2t A Bt = 0,
0 0

where we used the fact that z(0,e) = x(0) since the initial condition is historically given.

Substituting this expression into (9) leads the following equation:

T .
J(e) = /O {H(@(te). et ), M8), 1) + 2(t, DA b dt + A(0)2(0) = X(T)a(Tye). (10)

Now define £ as follows:
L(e,¢) = T () +Cx(T,e),

where ( is the Kuhn-Tucker multiplier associated with the constraint on z(7,e) > 0. Then,
from the Kuhn-Tucker conditions, if 2*(¢) and ¢*(t) are optimal, the following conditions must
be satisfied:

9L(0,¢)
5 = 0, (11)
2(T,0) >0, ¢ >0, ¢z(T,0) = 0. (12)
From (10), (11) is rewritten as
0L£(0,¢) , 0x(T,0)
5 _O@J(O)qtciag =0
& / { (), A(), 1) x () + |He (2 (2), c*(£), A(2), t) + )\(t):| ax((;g())} dt
0x(T,0)

- (A1) - O =

If there would exist some 7(t) # 0 such that J'(0) > 0, the objective J could be increased
by deviating from the (x*(t),c*(t)). if this would be the case, this contradicts to that the pair
(x*(t),c*(t)) is the solution to the problem (P). Therefore, optimality requires that

0x(t,0)
Oe

J'(0) = 0 Vy(t) and vt € (0, 7).



Since A(t) is arbitrary, z*(t) and ¢*(¢) must satisfy
Hc(x* (t)7 ¢ (t)7 )‘(t)a t) =0,
Hy(z*(t), c*(£), A1), 1) + A(t) = 0,
XNT) =¢.

The first two equations respectively correspond to (2) and (3). The third equation and the

condition (12) jointly give the condition (5). Finally (4) is equivalent to the transition equation.

O

From the definition of the Hamiltonian, (1),
(2) & Fe(z™(t), ¢ (1), 1) + A()ge(2”(t), " (t)) = 0, (13)
(3) & A(t) = - (Fx(x*(t)v ¢ (t),t) + At)ge (" (1), C*(t))>, (14)

where

) Ho
(D), el®) 69(1('9(2;;(75))7 x(x(t),c(t))_89(368(2;)6(0)

The differential equation (3) (or equivalently (14)) is called the Euler equaiton, the implication
of which in economic models is explained later. On the other hand, in the condition (5),
ANT)z*(T) = 0 is called the transversality condition (TVC). If there is no constraint on the

terminal stock z(T"), TVC is given by A\(T') = 0. Also its economic meaning is discussed later.

1.2 Sufficiency

When are the necessary condition of optimality both necessary and sufficient?

Theorem 2 (Mangasarian’s Sufficiency Theorem). Consider the problem (P). Suppose
that there exists the pair (x*(t), c*(t)) and \(t) such that they satisfy the conditions (2)—(5).
Suppose also that both of F' and g satisfy Assumption 1, and they are concave with respect to
(x, c) for allt € [0,T]. Then (z*(t),c*(t)) solve the problem (P).

Proof. [(x) Here the argument “t” of z(t) and c(t) is frequently suppressed unless to do so
would cause confusions.]
Define

D= /OT [F(x*,c*,t) - F(x,c,t)} dt.

Since F(+) is continuously differentiable, and concave with respect to (z, ¢),

F(z*,c* t) > F(z,c,t) + (2" — x)Fy(2*, ¢, t) + (¢" — ¢)Fe(x*, c*, t)Vt € [0,T].



Substituting the above property into the definition of D yields
T
D> / [(x* — x)Fp(x*, " t) + (¢ — o) Fe(z™, c*, t)]dt.
0

From (13) and (14), we can arrange the above inequality as follows:
T .
D> / [ =)+ Agela™, ¢ 1) = (¢ = Agels™, )| e
0

_ /O T (@ = 2)ga(a, ") + (¢" = )gela”, )] dt ~ /O Cwt o wia (19)

Integrating the last term by parts and using the TVC, we obtain
T _ T
/ (" —x)Adt = \N(T)(«™(T) — z(T)) — / Az* — z)dt
0 0
T
= AT)a(T) = [ Ao 0. 0) ~ sacp]ar (10

where we used the fact that z(0) = 2*(0). Substituting (16) into the right-hand-side of (15),
and using the concavity of g,
D2 [ Ao se) - gto.0) - (0 = 2anlo ) - = gt + ATl
> \NT)xz(T) > 0.
O

Furthermore, we can show that if both of F' and g are strictly concave, then (z*(t), c*(t))

is the unique solution to the problem (P).
2 Some Notes

2.1 Discounted Problem

For many problems in economics, future values of returns are discounted:

F<$7 G, t) = exp(—pt)f(x,c),

where p > 0 is called the discount rate.
Then, the problem (P) is now given by
T
exp(—pt) f(z(t), c(t))dt
subject to  @(t) = g(x(t),c(t)) 0<t<T, (P)
z(T) >0, x(0) given.

max J =

S—

The Hamiltonian is given by

H(x(t), c(t), A1), 1) = exp(—pt) f (x(t), c(t)) + A(t)g(x(t), c(t)).



Define the following new variable:

n(t) = exp(pt)A(t),

and the new function:

H(x(t), c(t), p(t)) = exp(pt) H (x(t), c(t), A1), 1)
= J(a(t), e(t)) + p(t)g(x(t), c(t)).

H is called the current-value Hamiltonian.*

Using this current-value Hamiltonian, we can rewrite the conditions (2)—(5) more simply:

~

He(z*,¢* p) =0 & fe(a®, ") + pge(z*, c*) = 0, (17)

fr = pp— Ho(a*, ¢, p) & o= pp— (fo(a", ¢*) + pga(z™, ¢*)) = 0, (18)
i = H,(z* c* p) & i = g(z,c), (19)

w(T)exp(—pT) = 0, «*(T) = 0, p(T)x*(T) exp(—pT) = 0. (20)

2.2 Interpretations of the costate variable pu(t)

As in the previous section, let x*(¢) and ¢*(¢) be the state- and control variables providing the
solution to the problem (P).
Define the following function V* : X — R.

T
V*((0)) :/0 exp(—pt) f (" (t), c*(t))dL. (21)
V*(2(0)) is called the value function, which is the maximized objective function for a given
initial state z(0).
Assumptiom 2. V is continuously differentiable.

How does the maximized value change if the initial state z(0) changes?

d *

Proposition 1. V*(z) <E Vd:c(?()()()))) = 11(0).
Proof. [(x) here the argument “t” is omitted to do so would cause confusions.]
From (21), differentiating V* with respect to z(0) yields

. av(z(0)) / g ey oy 92 (8) ey ey 067 (1)
VE(z(0) (=2 ) = o) [ fo(a* (1), () L 1 fu(a(2), ¢ (¢t dt.

2@ ) (= P55 = [Cesn(on) (1ula @0 O) 5 o) + Ll 0, ()
Substituting the optimality conditions (17) and (18) into the above expression,

T - -
Ve (2(0)) = - /0 exp(—pt) {[ﬂ + 1 (9o (2, ") — p)] %x((ot)) + pge(a”, C*)gx((g) } dt

- " exp(—pt) (0t ) G e ) G i) e G

B T ai*(t) . dz*(t)
= - /0 exp(—pt) [u + (A= pp) ax(o)] dt. (22)

~—

1 On the other hand, H is called the present-value Hamiltonian.



Integrating the last term of (22) by parts yields

T _ ox*(t) , ox*(T)
/0 exp(—pt)(ft — pp) 22(0) dt = p(T) exp(—pT) 92(0) “(O)ax(o)

T 256*
- [ utrexa(opn g i

Note that 0x(0)/0z(0) = 1 and that the TVC (5) holds for any levels of the initial state z(0).

This means that the above equation is reduced to

T _ ox*(t) ,, T di*(t)
/0 exp(—pt) i = pu) it = —p(0) - /0 ity expl(—pt) G (23)

Substituting (23) into (22), we obtain

O]

Thus, the costate variable p(0) is the marginal valuation in the optimal program of the

state variable.

3 Dynamic Programming in Continuous Time
3.1 Bellman’s Principle of Optimality

From the definition of V*(z(0)) given by (21), it follows that for all ¢; € [0, T]:

t1 T
V*((0)) = /0 exp(—pt) f (& (1), ¢ (£))dt + / exp(—pt) f (& (t), ¢ (£))dt

t1
t1 T
= /0 exp(—pt) f(z™(t), ¢ (t))dt + exp(—ph)/t exp[—p(t — t1)]f(27(t), " (¢))dt
Now consider another problem starting from date #;:
T
max [ explp(t — 1)) (a(t), ()
t1
subject to  Z(t) = g(x(t),c(t)) t1 <t <T, (Py)
>0,

x(T) x(t1) = x*(t1) given.

Theorem 3 (Principle of Optimality). Suppose that the pair (z*(t), ¢*(t)) is the solution
to the problem (P). Then, the following equation holds true for all t; € [0,T):

V*(w(o))—/o1eXp(—pt)f(iU*(t),C*(t))dt+eXp(—pt1)V*($*(t1))- (24)

Proof. omitted.

Suppose we follow the solution (z*(t),c*(¢)) for 0 < ¢ < ¢;, and then stop and reconsider
the optimal path from ¢; forward to T by solving the problem (P;). The above theorem states
that a solution to the problem (P;) must be (z*(t),c*(¢)), namely, the same as the original

solution to the problem (P) on the interval from ¢; forward to 7.



Note 1 (Relationship between Value Function and Costate Variable). Owing to the

above result, Proposition 1 holds not only for the initial date but also for any date.
Vi (" (1) = p()¥t € 0,7, (25)
Using this result, we can rewrite the TVC in (5) as follows
exp(—pT)V; (2*(T))a*(T) = 0.

3.2 Hamilton-Jacobi-Bellman Equation

Needless to say, in (24) we can arbitrary choose the initial date, 0, and the reconsidering date

t1. Then, on the optimal path, it follows that
T
Vi (a(t) = / exp[—p(T — )] f (27 (1), c"(7))dr
t
t+At T
= [ e e [ et (r), ¢ ()
t ¢

+At

The principle of optimality implies
t+At
V(¥ (b)) = / e PT0 F(a* (1), ¢ (7))dT + e PRV (2" (t + At)). (26)
t

We can approximate the first integral on the right-hand-side of (26) by f(x(¢),c(t))At. Fur-

thermore, by Taylor-expanding the second term,
e PRV H (x(t + AL)) ~ (1 — pADV*(2(t)) + Vi(z(t))At + h.o.t,

where h.o.t represents the collection of the higher order terms, where (h.o.t)/At — 0 as At — 0.
Substituting this expression into (26) and taking the limit of At — 0, we finally obtain

pV (2" (1) = f(&" (1), " () + Vi (&7 (8))g(«" (1), ¢* (1)) (27)

Briefly speaking, dynamic programming is an alternative way of solving the same problem

(P) by focusing on the following functional equation with V' : X — R being unknown:
pV (x(t)) = %%;c{f(x(t), c(t) + Ve (z(t)g(x(t), c(t))} - (28)

(28) is called the Hamilton-Jacobi-Bellman (HJB) equation. To solve the problem by using the

method of dynamic programming, we basically following three steps:

1. Solve the HJB equation (28) for V. The principle of optimality means that
V(z)=V*"(z)Ve € X. (29)

That is, the obtained function V corresponds to the value function V*.



2. Then, from the problem given by the HJB equation, we have
hla(t)) = asgmax (£ (0), €0) + Vi () (a(0). (1)}
where h : X — C' is called the policy function.

3. Given z(0), the pair (z*(t),c*(t)) is obtained from z*(t) = g(z*(¢t), h(x*(t))) and c¢*(t) =
h(z*(t)). Thus, on the optimal path, The HJB equation (28) gives (27).

Note 2 (Relationship between Value Function and Hamiltonian). We consider the
discounted problem. From (25), we can find that the right-hand-side of the HJB equation is the

mazimized current-value Hamiltonian. Namely,

pV* (w(t)) = mae A ((2). (1), (1) (30)

4 Discounted Infinite-horizon Problem

Most economic models, including not only economic growth, but also the models of repeated
games, political economy and so on, are formulated as infinite-horizon problems. Consider the

following problem by taking a limit of 7' — oo in the problem (P’):

max J :/0 exp(—pt) f(x(t), c(t))dt
subject to  z(t) = g(z(t), c(t))Vt € [0, 0), (Pso)

x(0) given.

In the same way as the proof of Theorem 2, we can show that if F' and g are concave in (z,c),
(2)—(4) and the TVC with T' — oo are the sufficient conditions of the solution, where the TVC
(5) is now replaced by

Jim exp(—pt)u(t)a*(t) = 0. (31)
4.1 On the Necessity of the TVC in the Infinite-horizon Problem

So, the remaining issue still to be considered is on the necessity of the TVC in the infinite-
horizon problem. Although it appears that (31) is necessary, this is not in general the case. To

see why, consider the following problem which gives us a counterexample.
Example 1 (The Problem without Discounting).
oo
max / (Inc(t) — Ine)dt
0

subject to  k(t) = k(t)* — 6k(t) — c(t)¥t € [0, 00),
k(0)given,



where c(t) and k(t) are consumption and physical capital, respectively. o € (0,1) and 6 > 0

1s the input share of capital and the depreciation rate. ¢ is the mazximum level of consumption

that can be achieved in the steady state of this model: i.e., ¢ = k" — 0k and k = (a/8)/ (1=,
Since there is no discounting in the above problem, the corresponding present value Hamil-

tonian always equals the current one:

~

H=H =Inc(t) — Ine+ M) (k(t)* — 5k(t) — c(t)). (32)

The first order necessary— and sufficient conditions are

H.=0&1/c(t) = A1), (33)
A= —H, & \t) = =\(t)(ak(t)* 1 =), (34)
k= Hy < k(t) = k(t)* — 0k(t) — c(t). (35)

Consider the steady state where ¢(t) = 0 and k(t) = 0. Then, from (33) and (34), the steady
state of k(t) is given by k = (a/8)/ (1= Substituting this into (35) with k = 0, the steady
state of c(t) is given by .

It can be verified that (k(t),c(t)) — (k,¢) as t — oo (we shall show this fact in the next

chapter). However, this condition, in turn, implies that

lim A(t)k(t) =

t—o00

Thus, the optimal path does not satisfy the TVC given in the form of (31).

4.2 An Alternative TVC

The other form of the transversality condition, which always applies to the infinite-horizon
problems, was shown by Michel (1982).

Theorem 4 (TVC in Infinite-Horizon Problem). Consider the problem (Ps,). Consider the
problem (P). Suppose that this problem has an interior continuous solution ¢*(t)(0 <t < T)
and the corresponding interior continuous path of the state variable x*(t). Then, there exists

A(t) > 0 such that c*(t) and x*(t) satisfy (2)-(4) and the transversality condition:

lim H(z*(t), c*(t), \(t),£) = 0,

t—o00

or equivalently

A

Jim exp(—pt) H (27 (t), ¢* (1), p(t)) = 0. (36)

Proof. The rigorous proof is omitted. A simplified proof is found in Acemoglu (2009, Ch.7). O

10



4.3

The Role of Time-Discounting

Unfortunately, the TVC in the form of (36) is not easy to check. However, using a discrete-time
model, Weitzman (1973) shows that the TVC in the form of (31): i.e., the limiting version of the

TVC in the finite-horizon problem (5), becomes necessary when there is time-discounting and

the objective function converges. Benveniste and Scheinkman (1982) shows that this result

holds also in continuous-time problems. All the problems considered in this lecture assume

time-discounting and converging objective functions. Thus we hereafter assume that the TVC

in the form of (31) is a necessary condition for infinite-horizon problems.
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