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Plan of Lectures in the Part of “Dynamic Optimization”

• June, 14 (Tue) (Today): An introduction to dynamic optimization

• June, 17 (Fri): Infinite-horizon dynamic programming in discrete time

• June, 21 (Tue): Continuous-time optimal control

• June, 24 (Fri): Dynamical system
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Introduction: A Cake-eating Problem

• Suppose that you are presented with a cake of size W > 0.

• In each period t (= 1, 2, 3, . . . , T ), you can eat some of the cake, and save
the rest.

• Let

• ct ≥ 0 be amount of your consumption in period t;

• u : R+ → R be your one-period utility function from ct;

• c = (c1, c2, . . . , cT ) ∈ RT
+.
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Your Preferences

• Your preferences are assumed to be given by the function U : RT
+ → R:

U(c) = u(c1) + βu(c2) + . . .+ βT−1u(cT )

=
T∑

t=1

βt−1u(ct),

where β ∈ (0, 1) is called the discount factor (割引因子).

• If one defines ρ > 0 such that β ≡ 1

1 + ρ
, then ρ is called the discount rate

(割引率).
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Optimization Problem

• Question: How do you decide your optimal plans of eating the cake?

• From the view point of microeconomic theory, the problem is formulated as
the utility maximization problem as follows:

max
c

T∑
t=1

βt−1u(ct),

s.t.
T∑

t=1

ct ≤ W, (P)

ct ≥ 0 t = 1, 2, . . . , T.

(∗) From the above constraints, ct ≤ W automatically implies for all t.
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Optimization Problem

• Thus, in this simple example, there is no

• Trade in markets: you do not buy or sell the cake; or

• Strategic interactions between you and other people: you do not need to share
the cake with any others.

• Instead, this example focus on your own intertemporal choice of
consumption. This gives the benchmark for the analysis of an individual’s
saving-consumption decision in macroeconomics.
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Optimization Problem

• Let D denote the constraint set (制約集合):

D =

{
c ∈ RT

+

∣∣∣∣∣
T∑

t=1

ct ≤ W

}

⇒ D is compact.

Assumption

U : RT
+ → R is a continuous function on D.

⇓

• The Weierstrass Theorem:
U attains a maximum (and a minimum) on D.
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Optimization Problem

• Exercise 1.1: Suppose that u(ct) = ct for all t = 1, 2, . . . , T . Then, show that
U is maximized at

c1 = W, c2 = c3 = . . . = cT = 0.
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Inequality-constrained Optimization

• The above problem (P) is the inequality-constrained optimization problem.

• Hereafter, in addition to its continuity, we assume

Assumption

1 u′(c) > 0;

2 u′′(c) < 0;

3 limc→0 u
′(c) = +∞.

The third property is called the Inada condition (稲田条件).
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Using the Theorem of Kuhn and Tucker: A “Cookbook”
Procedure

• Construct the following Lagrangian:

L(c, λ,µ) = U(c) + λ

(
W −

T∑
t=1

ct

)
+

T∑
t=1

µtct,

where
• λ: The KT multiplier associated with the constraint:

∑T
t=1 ct ≤ W ;

• µt: That associated with the constraint ct ≥ 0, and µ = (µ1, µ2, . . . , µT ).
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Using the Theorem of Kuhn and Tucker: A “Cookbook”
Procedure

• Then, derive the first order conditions (F.O.Cs):

βt−1u′(ct) + µt = λ, t = 1, 2, . . . , T, (1)

T∑
t=1

ct ≤ W, λ ≥ 0, λ

(
W −

T∑
t=1

ct

)
= 0, (2)

ct ≥ 0, µt ≥ 0, µtct = 0. (3)

• (2) and (3) are called the complementary slackness condition (相補性条件).

• Thanks to the concavity of U and the fact that D is a convex set, the above
F.O.Cs provide necessary and sufficient conditions for the maximization
problem.
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Solution

• Let c∗ = (c∗1, c
∗
2, . . .) denote the solution of the problem. Hereafter, we call

this the optimal consumption plan (最適消費計画).

• Since u′(c) > 0,
T∑

t=1

c∗t = W. (4)

• In addition, thanks to the Inada condition limc→0 u
′(c) = +∞, it follows that

c∗t > 0∀t.
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Solution

• Since c∗t > 0, µt = 0 holds from (3).

• Then, substituting µt = 0 into (1), we have

βt−1u′(c∗t ) = λ, t = 1, 2, . . . , T.

⇒ ct is obtained as c∗t = (u′)−1(λ/βt−1), where (u′)−1 is the inverse
function of u.

⇒ Substituting this result into (4),

T∑
t=1

βt−1 (u′)−1(λ/βt−1)︸ ︷︷ ︸
c∗t

= W.

Thus, by specifying the functional form of u, we can solve the above equation
for λ, which in turn determines the value of c∗t .
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Reformulation of the Problem: Optimal Control

• Consider the same problem, but now consider a “dynamic feature” of the
problem explicitly.

• Let wt denote the size of the leftover cake, which remains to be available for
you in period t. The following two conditions are satisfied.

w1 = W,

wt ≤ W t = 2, 3, . . . , T + 1.

• The value of wt changes over time, according to the following law of motion:

wt+1 = wt − ct. (5)

(5) is called the transition equation (推移方程式).
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Reformulation of the Problem: Optimal Control

• Then, the cake-eating problem can be formulated also as the following
optimal control problem (最適制御問題) in discrete time:

max U(c) =

T∑
t=1

βt−1u(ct)

s.t. wt+1 = wt − ct, t = 1, 2, . . . , T

wT+1 ≥ 0 (terminal condition),

w1 = W (initial condition).

(∗) The inequality constraint, ct ≥ 0, is now omitted because we have already

known that it never binds owing to the Inada condition.

• wT+1 is amount of a leftover piece of cake in period T . Thus, notice that

T∑
t=1

ct = W ⇔ wT+1 = 0.
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Euler Equation and Transversality Condition

• Once reset the meanings of notations, λ and µ, defined above.

• Construct the following Lagrangian :

L =

T∑
t=1

βt−1u(ct) +

T∑
t=1

λ̃t(wt − ct − wt+1) + µwT+1

=
T∑

t=1

βt−1 [u(ct) + λt(wt − ct − wt+1)] + µwT+1

where
• λt(= β−(t−1)λ̃t): The multiplier associated with the transition equation;
• µ: The KT multiplier associated with the constraint wt+1 ≥ 0.

(∗) λt is called the costate variable (共役変数) in the context of control.

Ryoji Ohdoi (Tokyo Tech) Advanced Macroeconomics: Dynamic Optimization Jun 14, 2016 16 / 22



Advanced Macroeconomics: Dynamic Optimization

Euler Equation and Transversality Condition

• The F.O.Cs are given by

u′(ct) = λt, (6)

λt = βλt+1, (7)

λT = µ, , (8)

wT+1 ≥ 0, λT ≥ 0, βT−1λTwT+1 = 0. (9)

• From (6) and (7), we can have the following expression:

u′(ct) = βu′(ct+1). (10)

(10) is called the Euler equation.

• On the other hand, from (6), (8) and (9), the third condition of (11) is
rewritten as

βT−1u′(cT )wT+1 = 0. (11)

This is called the transversality condition.
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Optimal con

• In sum, the optimal consumption plan c∗ = (c∗1, c
∗
2, . . . c

∗
T ) and

w∗ ≡ (w∗
1 , w

∗
2 , . . . , w

∗
T+1) are given by the following 2T+1 equations:

(i) Transition equation: w∗
t+1 = w∗

t − c∗t t = 1, 2, . . . , T,

(ii) Euler equation: u′(c∗t ) = βu′(c∗t+1) t = 1, 2, . . . , T − 1,

(iii) Transversality condition: βT−1u′(c∗T )w
∗
T+1 = 0,

⇒ w∗
T+1 = 0 in this case,

(iv) Initial condition: w∗
1 = W.

Of course, the obtained consumption plan must be the same as that obtained
under the original formulation (on pp. 13).

• So, what is advantage of this formulation?

1 We can use this method even when the transition equation is non-linear.

2 We can utilize the “recursive feature” of the problem.
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Recursive Feature of the Problem

• So far, we formulate the cake-eating problem in two different ways.

• Note that, in either case, you solved the problem in the initial period.

• Suppose that you stop and reconsider the problem in period, say, t0. Your
problem from then on is

max
T∑

t=t0

βt−t0u(ct)

s.t. wt+1 = wt − ct,

wT+1 ≥ 0,

wt0 given.

　 You will solve essentially the same problem as you did in the initial period!
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Recursive Feature of the Problem

• The dynamic programming technique, based on the Bellman’s principle of
optimality, utilizes such a property that the problem is recursively defined.

• Let

V (w1) = max
c

{
T∑

t=1

βt−1u(ct) | wt+1 = wt − ct, t = 1, 2, . . . T

}
,

where V : R+ → R is called the value function (価値関数). In the context of
economics, V is called the indirect utility function.
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Bellman Equation

• Briefly speaking, the principle of optimality means

V (w1) = max
c

{
T∑

t−1

βt−1u(ct)

∣∣∣∣∣ wt+1 = wt − ct, t = 1, 2, . . . T

}
= max

c1
{u(c1) + βV (w2) | w2 = w1 − c1} . (12)

(12) is called the Bellman equation (ベルマン方程式).

• The dynamic programming technique, now widely used in macroeconomics,
solves the maximization problem by converting the original problem into a
two-period problem characterized in the Bellman equation.

(∗) Note that the value function in (12) is still to be determined. Thus, the
Bellman equation is a functional equation.
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Next Week

• Infinite-horizon dynamic programming with more general functional forms
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