VLSI System Design Part II : Logic Synthesis (1)

Lecturer : Tsuyoshi Isshiki

Dept. Communications and Computer Engineering, Tokyo Institute of Technology <u>isshiki@vlsi.ce.titech.ac.jp</u>

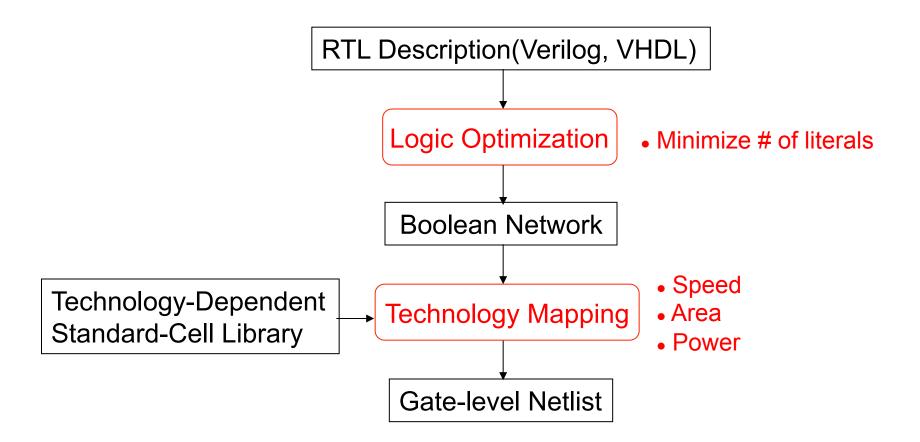
Logic Synthesis

- 1. Logic synthesis types
 - a. Combinational logic synthesis
 - Two-level logic
 - Multi-level logic
 - b. Sequential logic (finite state machine) synthesis
 - State minimization
 - State encoding

2. Currently available logic synthesis CAD tool

- Mainly two-level/multi-level logic synthesis
- State code optimization for sequential logic

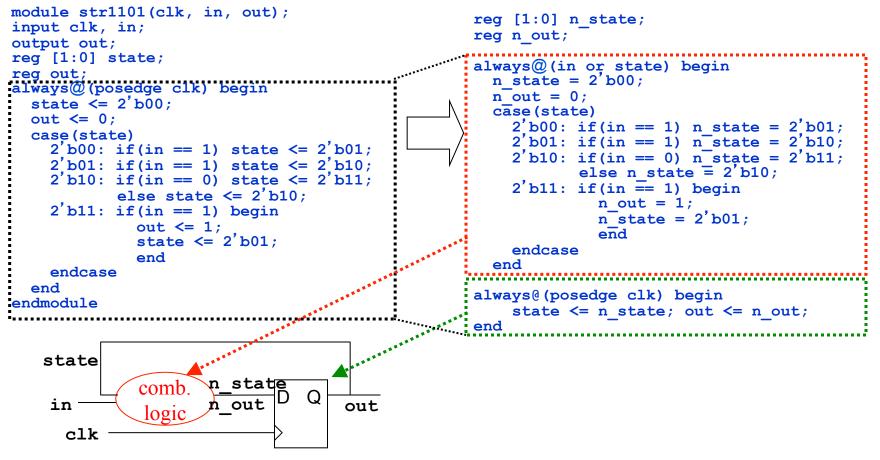
Logic Synthesis Flow



RTL-to-Logic Translation (1)

A) Combinational logic extraction :

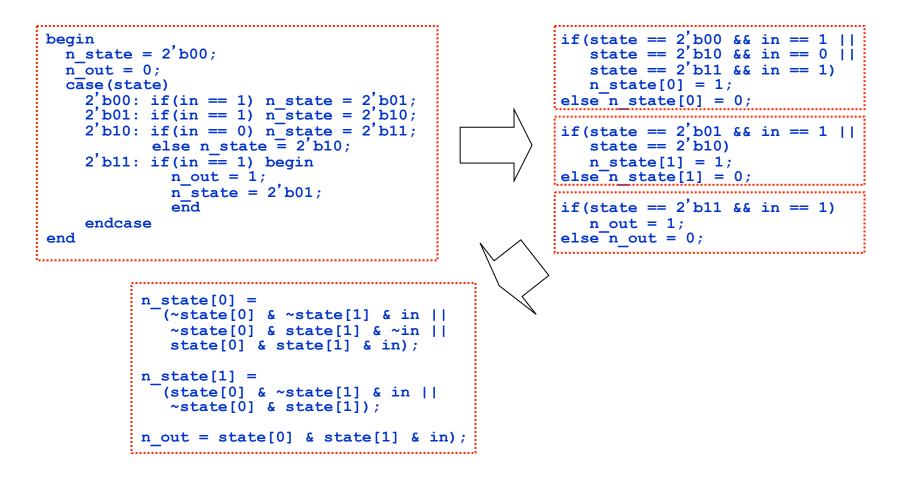
RTL description is partitioned into combinational logic part and storage elements (DFF, latches)



RTL-to-Logic Translation (2)

B) Logic equation transformation :

For each output variable, compute the conditions in which the value evaluates as 1, 0, and don't-care (DC).



RTL-to-Logic Translation (3)

A) Combinational logic extraction

```
module str11011(clk, rst, in, out);
                                                     reg [2:0] n state;
input clk, in;
                                                     req n out;
output out;
reg [2:0] state;
                                                     always@(in or rst or state) begin
req out;
                                                       n state = 3'b000;
always@(posedge clk) begin
                                                       n out = 0;
  state <= 3'b000;</pre>
                                                       i\overline{f}(rst == 0)
  out \leq 0:
                                                          case(state)
  if(rst == 0)
                                                            3'b000: if(in == 1) n state = 3'b001;
    case(state)
                                                            3'b001: if(in == 1) n state = 3'b010;
      3'b000: if(in == 1) state <= 3'b001;
                                                            3'b010: if(in == 0) n state = 3'b011;
      3'b001: if(in == 1) state <= 3'b010;
                                                                    else n state = 3'b010;
      3'b010: if(in == 0) state <= 3'b011:
                                                            3'b011: if(in = 1) n state = 3'b100;
               else state <= 3'b010;</pre>
                                                            3'b100: if(in == 1) begin
      3'b011: if(in == 1) state <= 3'b100;
                                                                      n out = 1;
      3'b100: if(in == 1) begin
                                                                      n state = 3'b010;
                 out \leq 1:
                                                                      end
                 state <= 3'b010;</pre>
                                                           default: begin // don't-care state
                 end
                                                                     n state = 3'x;
      default: begin // don't-care state
                                                                     \overline{out} = x:
                state \leq 3'bx;
                                                                     end
                out \leq x;
                                                         endcase
                end
                                                       end
    endcase.
endmodule
                                                     always@(posedge clk) begin
                                                         state <= n state; out <= n out;</pre>
                                                     end
```

.

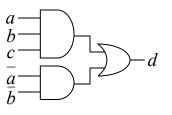
RTL-to-Logic Translation (4)

```
B) Logic equation transformation :
begin
  n \text{ state} = 3'b000;
  n out = 0;
  i\overline{f}(rst == 0)
    case(state)
      3'b000: if(in == 1) n state = 3'b001;
      3'b001: if(in == 1) n state = 3'b010;
      3'b010: if(in == 0) n state = 3'b011;
               else n state = 3'b010;
      3'b011: if(in == 1) n state = 3'b100;
      3'b100: if(in == 1) begin
                 n out = 1;
                 n state = 3'b010;
                 end
      default: begin // don't-care state
                n state = 3'x;
                out = x:
                end
    endcase
  end
```

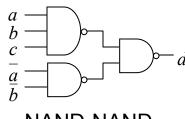
```
if(state == 3'b000 && in == 1 ||
   state == 3'b010 && in == 0)
   n state[0] = 1;
else if (state == 3'b101 ||
   state == 3'b110 ||
   state == 3'b111)
   n state[0] = \mathbf{x};
else n state[0] = 0;
if(state == 3'b001 && in == 1 ||
   state == 3'b010 ||
   state == 3'b100 && in == 1)
   n state[1] = 1;
else if(state == 3'b101 ||
   state == 3'b110 ||
   state == 3'b111)
   n state[1] = \mathbf{x};
else n state[1] = 0:
if(state == 3'b011 && in == 1)
   n state[2] = 1;
else if(state == 3'b101 ||
   state == 3'b110 ||
   state == 3'b111)
   n state[2] = x;
else n state[2] = 0;
if(state == 3'b100 && in == 1)
   n out = 1;
else if(state == 3'b101 ||
   state == 3'b110 ||
   state == 3'b111)
   n out = x;
else n out = 0;
```

Boolean Function Implementation Using Two-Level Logic

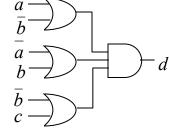
- The study of logic synthesis started from two-level logic
- Optimized two-level logic is often the starting point for multi-level logic synthesis.
- Several types of two-level logic
 - Sum-of-product (1st level : AND, 2nd level : OR)
 - NAND-NAND (has the same structure as sum-of-product)
 - Product-of-sum (1st level : OR, 2nd level : AND)
 - NOR-NOR (has the same structure as product-of-sum)



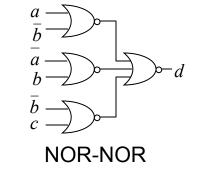
sum-of-product



NAND-NAND



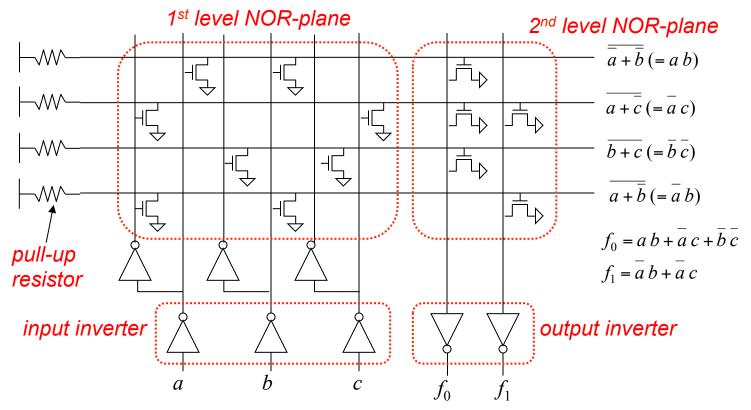
product-of-sum



All four circuits implement the same function

Programmable Logic Array

- A programmable logic array is a device which can implement arbitrary Boolean function in sum-of-product form with *N* inputs, *M* outputs, and *R* products (cubes).
- Minimizing the number of products *R* results in smaller area (*N* and *M* are fixed for a given function)



Boolean Function Terminologies (1)

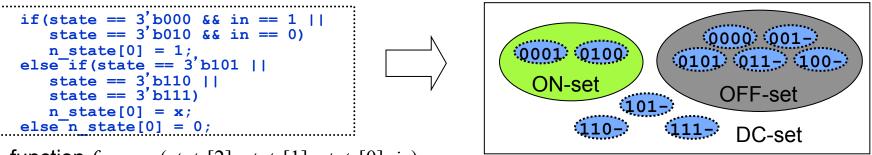
- 1. Boolean function *f* with *N* inputs and *M* outputs is a mapping $f: \{0, 1\}^N \rightarrow \{0, 1, X\}^M$. (*X*: don't-care)
- 2. If mapping to don' t-care values does not exist, the function is said to be *completely specified*. Otherwise it is said to be *incompletely specified*.
- 3. If M = 1, it is called a *single-output function*. Otherwise it is called a *multiple-output function*.
- 4. For each output f_m of function f:
 - **ON-set** is defined as the set of input values x such that $f_m(x) = 1$
 - **OFF-set** is defined as the set of input values x such that $f_m(x) = 0$
 - **DC-set** is defined as the set of input values x such that $f_m(x) = X$
- 5. A *literal* is a Boolean variable or its complement.
- 6. A *cube* is a conjunction of literals (a product term).
- 7. A *cover* is a set of cubes (interpreted as sum-of-product term).

Boolean Function Terminologies (2)

A *bit vector notation* of a cube describes the polarity of each literal (0 : complemented literal, 1 : uncomplemented literal) for each variable in the Boolean function. If a variable does not appear in the cube, it is denoted as '-' (also don' t-care)

Ex. $x_3 \overline{x_2} x_1 \overline{x_0} \rightarrow 1010$ $x_3 x_2 \overline{x_0} \rightarrow 11-0$

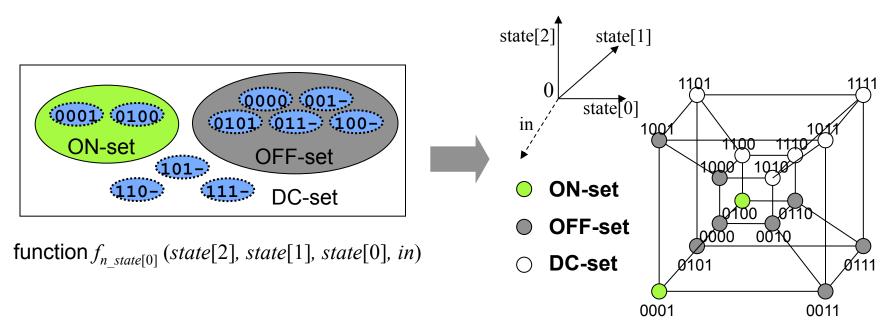
- 9. A cube is called a *k*-cube if there are *k* elements of '-' (don' t-care) in the bit vector notation.
- 10. A *minterm* is a cube that contains all variables in the Boolean function. Each minterm belongs to either the ON-set, OFF-set or the DC-set of a particular output of the function. A minterm is a 0-cube.



function $f_{n_state[0]}$ (state[2], state[1], state[0], in)

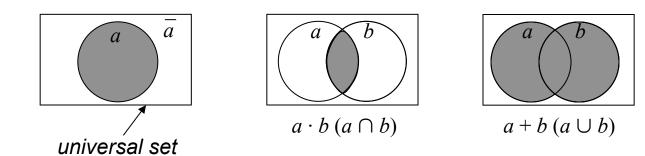
Boolean Function Terminologies (3)

- 11. The input variable space $\{0, 1\}^N$ can be modeled as a binary *N*-dimensional hypercube
 - Each vertex in the hypercube represents a minterm.
 - *k*-cube is represented by a binary *k*-dimensional hypercube
 - k-dimensional hypercube is sometimes referred to as "binary k-cube"



Boolean Function Terminologies (4)

- 12. Analogy of Boolean algebra to Class calculus (Set Theory)
 - logic variable \rightarrow set
 - logic negation → complement set
 - logical $1 \rightarrow$ universal set
 - logical $0 \rightarrow \text{null set } (\phi)$
 - logical AND \rightarrow set intersection $(a \cdot b \rightarrow a \cap b)$
 - logical OR \rightarrow set union $(a + b \rightarrow a \cup b)$



Boolean Function Terminology (4)

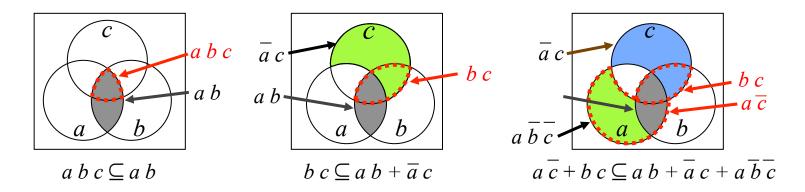
- 13. Partial order and containment
 - Partial order of logic variables : $f \le g \Leftrightarrow (\text{if } f = 1, \text{ then } g = 1) \Leftrightarrow f \cdot g = f$
 - > Interpretation in set theory \rightarrow containment of sets : $f \subseteq g$
 - Partial order of logic expression (cubes and covers) :

```
a \ b \ c \le a \ b \rightarrow a \ b \ c \subseteq a \ b
```

```
b c \le a b + \overline{a} c \rightarrow b c \subseteq a b + \overline{a} c
```

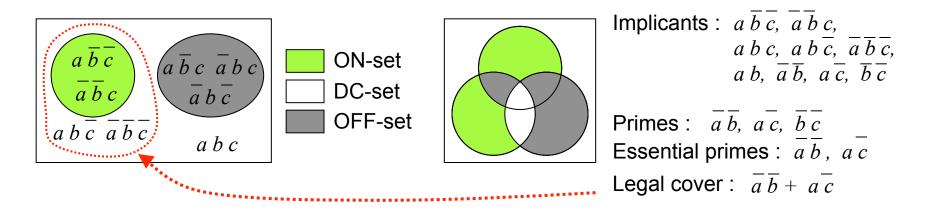
 $a \overline{c} + b c \le a b + \overline{a} c + a \overline{b} \overline{c} \rightarrow a \overline{c} + b c \subseteq a b + \overline{a} c + a \overline{b} \overline{c}$

 Terminologies for set theory (intersection, union, containment) is often applied to logic expressions.



Boolean Function Terminology (5)

- 14. An *implicant* for <u>a particular output of a function</u> is a cube which contains minterms only in the ON-set and DC-set. (*In other words, a cube which does not intersect with the OFF-set*)
- 15. A *prime implicant* (or simply, *prime*) is an implicant that is not contained by any other implicant, and intersects with the ON-set.
- 16. An *essential prime implicant* (or *essential prime*) is a prime that contains one or more minterms which are not contained by other primes.
- 17. A *legal cover* for a function is a set of implicants which contains the ONset and does not intersect with OFF-set (may intersect with DC-set).



Two-Level Logic Optimization

- Input : Boolean function representation using
 - > Truth table or
 - Set of cubes in the ON-, OFF- and DC-sets.
 - Since the union of the ON-, OFF- and DC-sets is the universal set, specifying two sets (ex. ON-set and DC-set) is sufficient for describing a Boolean function.
 - For a completely specified function, only the ON-set is needed.
- Output : optimized Boolean function in terms of number of cubes (or sometimes number of literals)
- Algorithm :
 - A) Enumerate all prime implicants of the target function
 - B) Select a minimum set of prime implicants which are required to contain the ON-set of the target function.

Preparation : Cube Reduction

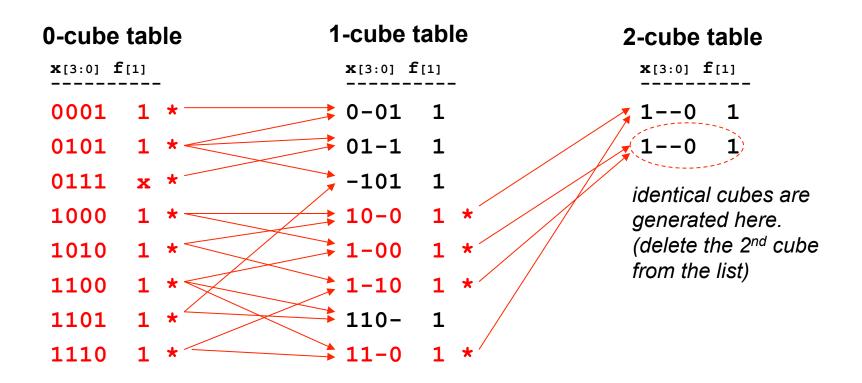
- For a pair of cubes A and B, if there exists an cube C such that A + B
 = C, then A and B are said to be *adjacent* and are *reducible* to C.
- On the bit-vector representations, adjacency of a pair of implicants can be determined by comparing elements in each position : if only one position is different, and if all '-' positions are same, then the implicant pair is adjacent.

	а	b	С	d
a	1	1	1	
a b c d	1 1	1 1	1	i reducible
abc	1	1	1	
a b c a b c	1	1 1	0	_ don't-cares at the same position
a b c	1	1	1	reducible
a b	1	1	_ 🖌	_

Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (1)

4		ima impliaant avtraction	truth table	0-cube table		
1.		ime implicant extraction	x [3:0] f [1]	x [3:0] f [1]		
	A) B)	From the truth table, delete minterms in OFF-set. (0-cube table : contains only minterm implicants) k=0.	0000 0 0001 1 0010 0	0001 1 * 0101 1 * 0111 x *		
	С)	Let N be the # of rows in k-cube table. If N=0, then terminate.	0011 0 0100 0 0101 1 0110 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	D)	for(i = 0; i < N; i ++) for(j = i + 1; j < N; j ++)	0111 x 1000 1 1001 0	1110 1 *		
		If rows i and j are adjacent,	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1-cube table x [3:0] f [1]		
		 mark these 2 rows with '*' add a reduced cube to (k+1)-cube table Output part of the reduced cube is 1 if it intersects with the ON-set. Otherwise (if it is fully contained in the DC-set), it is <i>x</i>. 	1100 1 1101 1 1110 1 1111 0	$\begin{array}{cccccc} 0-01 & 1 \\ 01-1 & 1 \\ -101 & 1 \\ 10-0 & 1 & * \\ 1-00 & 1 & * \\ 1-10 & 1 & * \\ 110- & 1 \end{array}$		
	E)	k=k+1. Go to C) .		11-0 1 *		
	F)	Rows whose output is 1 and without '*' marked are the prime implicants.		2-cube table x[3:0] f[1] 10 1		

Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (2)



Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (3)

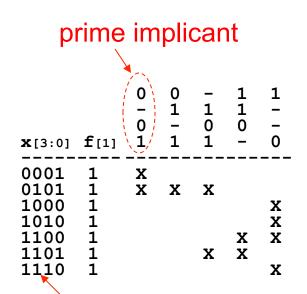
2. Prime implicant table generation

- A) Assign ON-set minterms to each row
- B) Assign prime implicants to each column
- C) For each minterm row, mark an 'x' at the column whose prime implicant contains this minterm

3. Prime implicant cover extraction containing all ON-set minterm

(*minimum unate covering problem:NP-complete*)

- A) Delete dominated prime (column) and dominating minterm (row)
- B) Extract essential primes and delete all minterms (rows) which are contained in these essential primes.
- C) Arbitrary select a prime and delete all minterms which are contained in this prime.



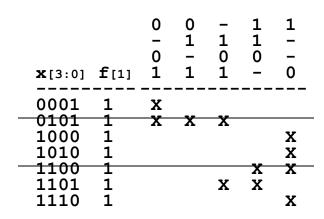
ON-set minterm

Techniques to reduce the problem complexity (can be applied in any order)

Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (4)

3.A Elimination of dominating minterms

- Prime set for a minterm A set of primes which contain the minterm Ex: prime set for 0101 is {0-01, 01-1, -101}
- **Dominating minterm :** On a pair of minterms, if the prime set of one of the minterm contains that of the other, the former minterm is said to be the *dominating minterm* of the latter.
- Prime set is the set of candidate for covering the particular minterm.
 Dominating minterms can be eliminated from the problem since the prime which covers some *dominated* minterm always covers the corresponding *dominating* minterm.



• Row **0101** is the dominating minterm of row **0001**.

• Row 1100 is the dominating minterm of rows 1000, 1010 and 1110.

Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (5)

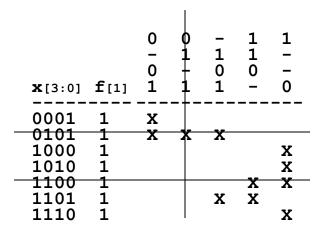
3.A Elimination of dominated primes

Minterm set for a prime
 A set of minterms which are contained by the prime

 Ex: minterm set for 0-01 is (0001, 0101)

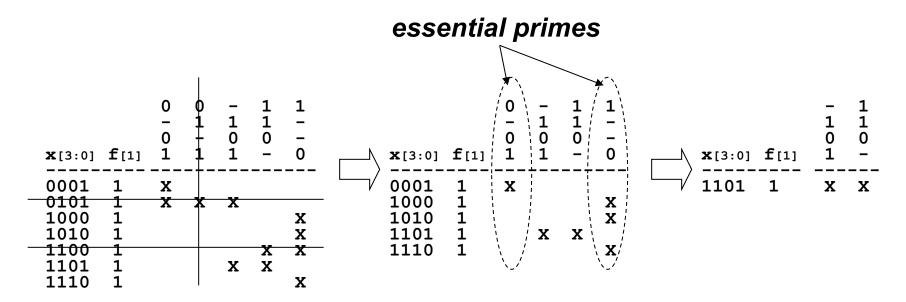
Ex: minterm set for 0-01 is {0001, 0101}

- **Dominated prime :** On a pair of primes, if the minterm set of one of the prime contains that of the other, the latter prime is said to be the *dominated prime* of the former.
- Dominated primes can be eliminated from the problem since the entire minterm set of a *dominated* prime is always covered by the *dominating* prime.



• Column 01-1 is the dominated prime of column 0-01 and -101.

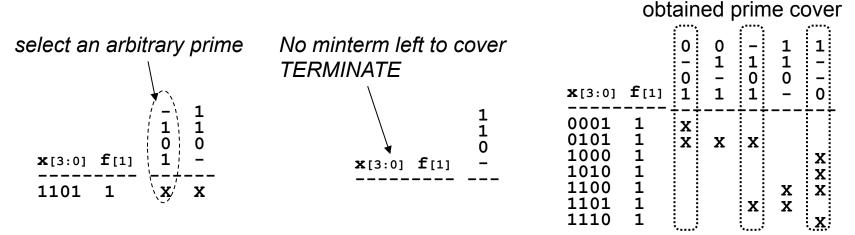
Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (6)



3.B Extraction of essential primes

An essential prime implicant (or essential prime) is a prime that has at least one ON-set minterm which are not contained in any other primes. Such minterms are called essential minterms.

Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (7)



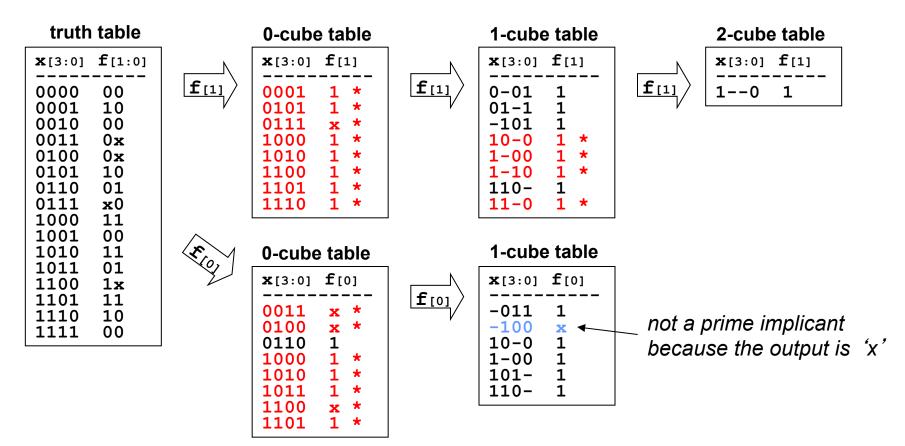
3.C Arbitrary selection of remaining primes

- If 3.A (*elimination of dominating minterms and dominated primes*) and 3.B (*essential prime extraction*) cannot further be applied, select an arbitrary remaining prime and delete the rows (minterms) which is contained in this prime. Try 3.A and 3.B again.
- If all minterms have been covered, then *TERMINATE*.
- In order to obtain an optimal cover, do all combinations of the arbitrary prime selection.

Multiple-Output 2-Level Logic Minimization Using Quine-McCluskey Method (1)

1. Prime Implicant Extraction

A) Extract the prime implicants for each output seperately.



Multiple-Output 2-Level Logic Minimization Using Quine-McCluskey Method (2)

2. Prime Implicant List Merging

A) For each prime *p* in the <u>all prime implicant lists</u>

- $\underline{m^{\text{th}} \text{ output is 1}}$ if there exists a prime in the $\underline{m^{\text{th}}}$ prime implicant list which contains p.
- <u>mth output is 0</u> otherwise.
- This allows implicants other than the primes to be included in the candidate for minterm covering.

prime implicant list **x**[3:0] **f**[1:0] 10 0 - 0110 01 - 110 -101110-11 1 - - 010 0110 01 01 -01111 10 - 011 1 - 00101-01 110- 11

these are identical primes delete one of them from the list

Multiple-Output 2-Level Logic Minimization Using Quine-McCluskey Method (3)

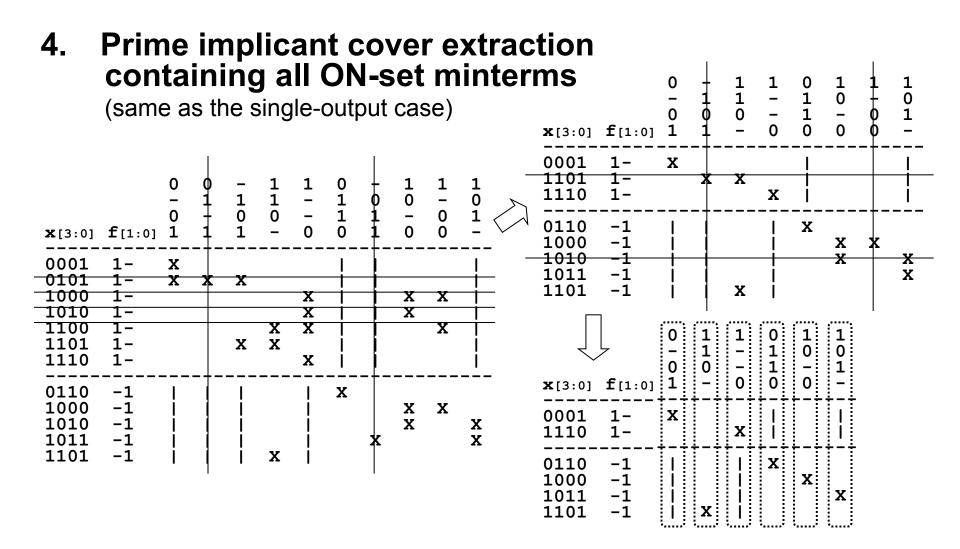
3. Prime implicant table generation

- A) Assign ON-set minterms to each row *for each output*
- B) Assign prime implicants to each column
- C) For each minterm row,
 - mark an '|' at the column whose output part of the corresponding prime implicant is 0 for the corresponding output of this minterm
 - Otherwise, mark an 'X' at the column whose prime implicant contains this minterm

x [3:0]	f [1:0]	0 - 0 1	0 1 - 1	- 1 0 1	1 1 0 -	1 - 0	0 1 1 0	- 0 1 1	1 0 - 0	1 - 0 0	1 0 1 -
0001 0101 1000 1010 1100 1101 1110	1- 1- 1- 1- 1- 1- 1- 1-	x x	x	x x	X X	X X X X			x x	x x	
0110 1000 1010 1011 1101	-1 -1 -1 -1 -1				x		X	x	X X	x	x x
These primes cannot be used for covering											

These primes cannot be used for covering because they intersect with the OFF-set of the corresponding output

Multiple-Output 2-Level Logic Minimization Using Quine-McCluskey Method (4)



Improving Quine-McCluskey Method (Espresso-EXACT, UC Berkeley)

Problems

- Need to specify all minterms
- Need a large number of cube reducibility tests.
 - > Only a small portion will pass the test to generate reduced cubes.
 - Identical primes may be generated multiple times.
- Size of the prime implicant table is large since each row corresponds to minterms

Improvements

- Extract all the prime implicants directly without enumerating minterms.
- Generate a *reduced prime implicant table* and solve the minimum covering problem on this smaller table.

Direct Extraction of Prime Implicants (Preperation 1)

- Corollary 1 : Let P be a cover for a completely specified function f.
 For any implicant c of f, there exists c' ∈ P such that c ⊆ c' if and only if P includes all primes of f.
- **Theorem 1**: Let P_f and P_g be the covers for *completely specified* functions f, and g, respectively. And let P_{fg} be $P_f \cdot P_g$ that is expanded in sum-of-product form. If P_f and P_g include all primes for f and g, respectively, then P_{fg} includes all primes of function $f \cdot g$.

• Proof :

By definition, P_{fg} is a cover whose cube elements are the non-zero conjunctions of a cube in P_f and cube in P_g ;

$$P_{fg} = \{c_f \cdot c_g \mid c_f \in P_f, c_g \in P_g, c_f \cdot c_g \neq 0\}.$$

Any implicant of the function $f \cdot g$ is also an implicant for both f and g (if $f \cdot g$ is true, then both f and g must be true as well). Thus for any implicant c of $f \cdot g$, there exists $c_f \in P_f$ and $c_g \in P_g$ such that $c \subseteq c_f$ and $c \subseteq c_g$. Therefore $c \subseteq c_f \cdot c_g \in P_{fg}$.

Direct Extraction of Prime Implicants (Preperation 2)

• **Theorem 2**: Let *P* be a cover for a *completely specified* function *f*, and *P*' be the cover for the complement of *f* (denoted as \overline{f}) which is obtained by applying De-Morgan's Law to *P* and then expanding it to sum-of-product form. *P*' includes all primes of \overline{f} .

(Let us call this the **Negate-And-Expand Method**)

Proof :

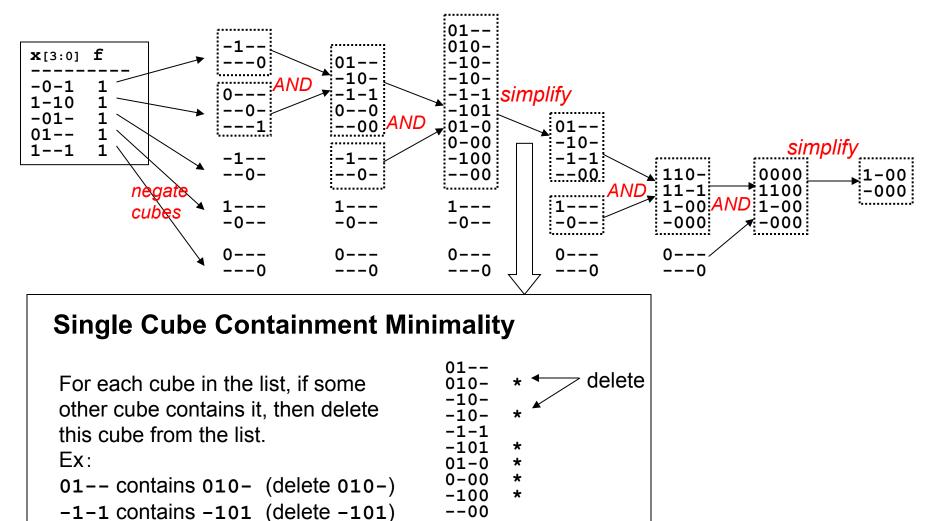
•

- Let $P = c_0 + c_1 + ... + c_n$ (c_i is a cube)
- By De-Morgan's Law: $\overline{P} = \overline{c_0 + c_1 + \ldots + c_n} = \overline{c_0 \cdot c_1} \cdot \ldots \cdot \overline{c_n} \cdots (1)$
- A complement of a cube becomes a cover composed of singleliteral cubes. Each single-literal cube is the prime of this cover.

Ex. $\overline{x_0 \cdot \overline{x_1} \cdot x_2} = \overline{x_0} + x_1 + \overline{x_2}$

• Since each term in eq(1) becomes a cover composed of primes for that cover, expanding these terms into sum-of-product form results in a cover composed of all primes of \overline{f} . (according to Theorem 1)

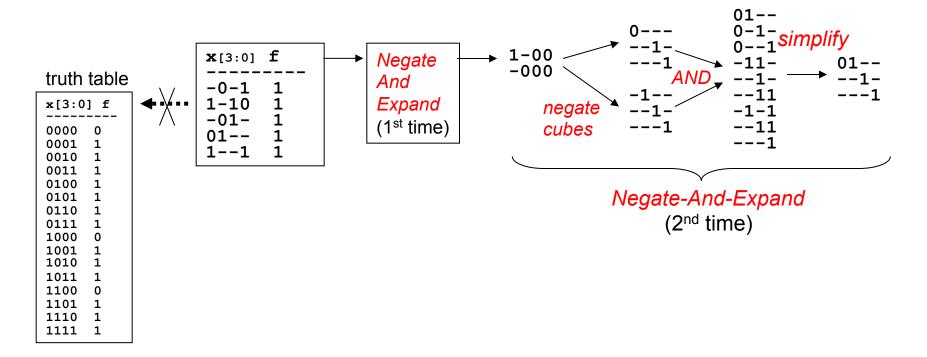
Negate-And-Expand Method



Direct Extraction of Prime Implicants for Completely Specified Functions

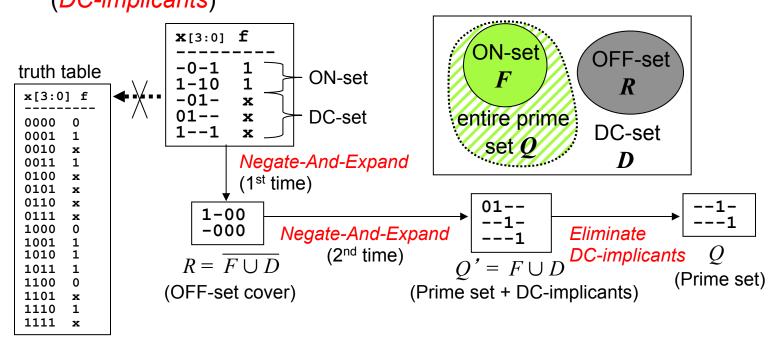
By applying Negate-And-Expand twice on a cover for a completely specified function *f*, the obtained cover becomes the entire set of primes for *f*.

 $\mathsf{Ex.}\,f = x_0\,\overline{x}_2 + \overline{x}_0\,x_1\,x_3 + x_1\,\overline{x}_2 + x_2\,\overline{x}_3 + x_0\,x_3$



Direct Extraction of Prime Implicants for Incompletely Specified Functions

For an incompletely specified function *f*, apply the Negate-And-Expand operations twice on the cover containing both the <u>ON-set</u> and <u>DC-set</u>. The obtained cover includes all primes of *f* and possibly other implicants <u>which do not intersect with the ON-set</u>. (<u>DC-implicants</u>)



Function Negation Methods (1)

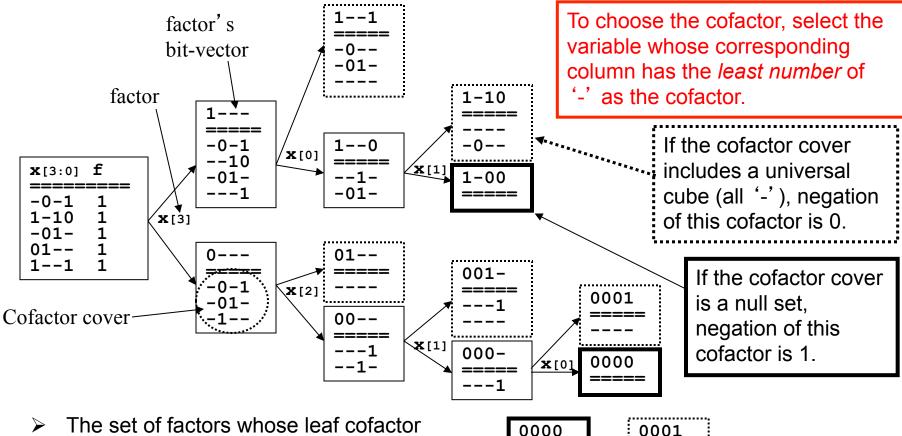
- Computation time of Negate-And-Expand operation can become very long when there are a large degree of redundancy in the cover representation of the function (i.e. a large number of small cubes).
- While the 2nd negation requires Negate-And-Expand operation in order to obtain the entire prime set, <u>the obtained cover after the 1st</u> <u>negation (OFF-set cover) does not have to be the entire prime set for</u> <u>the negated function.</u>
- Shannon Expansion method can be used for the 1st negation to obtain the OFF-set cover.
- The cover obtained by Shannon Expansion does not include all primes for the negated function, but its redundancy is relatively low. Also, the computational complexity is significantly lower than Negate-And-Expand Method.

Shannon Expansion

- $f_{x_i} : \text{ cofactor of } f \text{ with respect to factor } x_i$ $f_{x_i} = f(x_0, \dots, x_{i-1}, 1, x_{i-1}, \dots, x_{n-1}), \ f_{x_i} = f(x_0, \dots, x_{i-1}, 0, x_{i-1}, \dots, x_{n-1})$ $\text{Ex} : f = a \ \overline{b} \ \overline{c} + a \ c \ \overline{d} + \overline{b} \ c \ d$ $f_a = \overline{b} \ \overline{c} + c \ \overline{d} + \overline{b} \ c \ d, \ f_a = \overline{b} \ c \ d, \ f_{ac} = \overline{d} + \overline{b} \ d$
- Shannon expansion : $f = x_i f_{x_i} + \bar{x_i} f_{\bar{x_i}}$
- Shannon expansion negation : $\overline{f} = x_i \overline{f_{x_i}} + \overline{x}_i \overline{f_{\overline{x_i}}}$
- Recursive Shannon expansion negation :

$$\begin{aligned} &\mathsf{Ex}: f = a \ \overline{b} \ \overline{c} + a \ b \ c + \overline{b} \ c \\ &\overline{f} = a \overline{f_a} + \overline{a} \overline{f_{\overline{a}}} = a \ (\overline{b} \ \overline{c} + b \ c + \overline{b} \ c) + \overline{a} \ (\overline{b} \ \overline{c}) \\ &\overline{f_a} = b \ \overline{f_{ab}} + \overline{b} \ \overline{f_{a\overline{b}}} = b \ (\overline{c}) + \overline{b} \ (\overline{c} + c) = b \ \overline{c} \\ &\overline{f_{\overline{a}}} = b \ \overline{f_{ab}} + \overline{b} \ \overline{f_{\overline{ab}}} = b \ (0) + \overline{b} \ (\overline{c}) = b + \overline{b} \ \overline{c} \\ &\overline{f} = a \ \overline{f_a} + \overline{a} \ \overline{f_{\overline{a}}} = a \ (b \ \overline{c}) + \overline{a} \ (b + \overline{b} \ \overline{c}) = a \ b \ \overline{c} + \overline{a} \ b + \overline{a} \ \overline{b} \ \overline{c} \end{aligned}$$

Function Negation by Shannon Expansion (1)



1 - 00

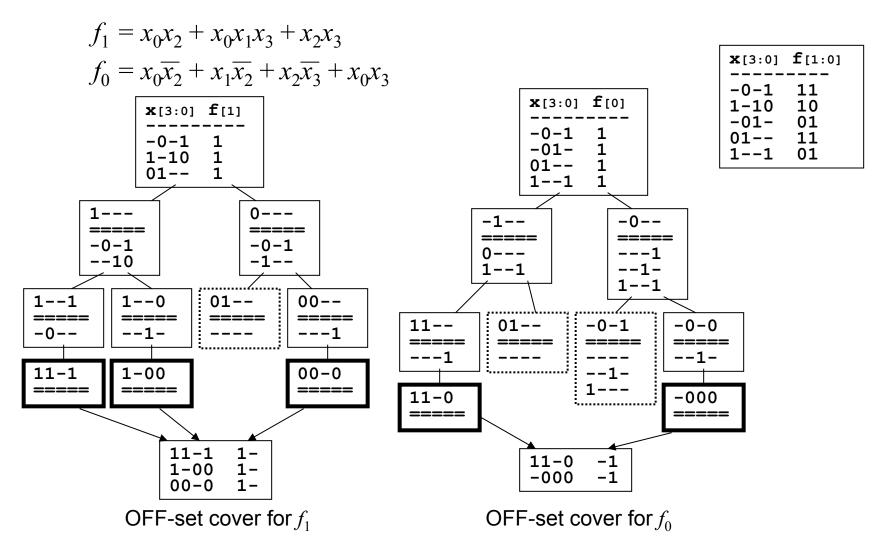
001-

01 - -

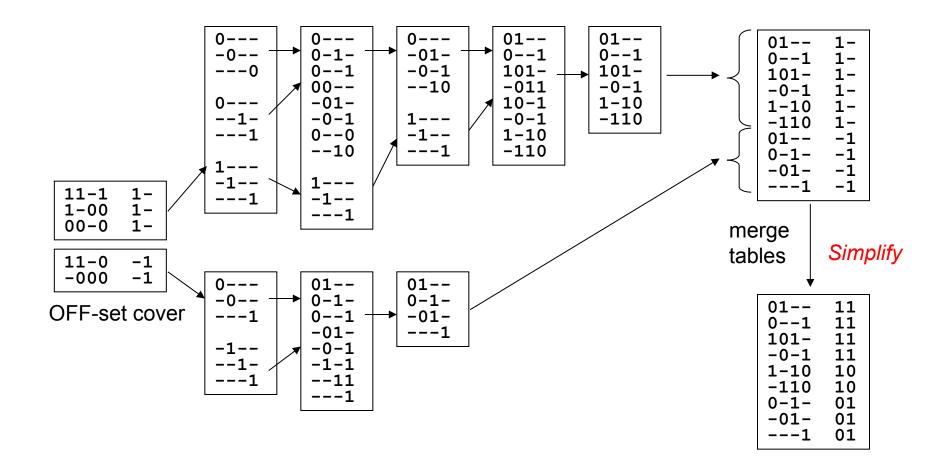
1-101--1

- The set of factors whose leaf cofactor is 0 is equivalent to the OFF-set cover.
- The set of factors whose leaf cofactor is 1 is equivalent to the ON-set cover.

Shannon Expansion on Multiple-Output Function



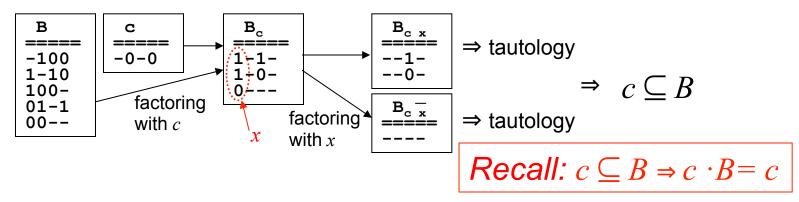
Negate-And-Expand Method for Multiple-Output Functions



Reduced Prime Implicant Table Generation (1)

- Essential prime set $E_r = \{c \mid c \in Q, F \not\subseteq Q c\}$:

 - ▶ Checking $F \cap c \not\subseteq Q c$ (instead of $F \not\subseteq Q c$) is sufficient.
- Containment check
 - ► $A \subseteq B \Leftrightarrow c \subseteq B$ for $\forall c \in A$ (*A*, *B* : cover, *c* : cube)
 - In order for a cover to be contained in another (partial order), all cube included in the former needs to be contained in the latter.
 - → $c \subseteq B \Leftrightarrow B_c \equiv 1$ (B_c : cofactor of *B* with respect to cube *c*)
 - → $B = 1 \Leftrightarrow B_x = 1 \land B_x = 1$ (tautology check by recursion)



Reduced Prime Implicant Table Generation (2)

- Relatively redundant prime set $R_r = Q E_r$
- Totally redundant prime set $R_t = \{c \mid c \in R_r, c \subseteq E_r\}$
- Partially redundant prime set $R_p = R_r R_t$
- On obtaining a minimal prime set which covers the ON-set *F*
 - \checkmark E_r is always included
 - \checkmark R_t is never included
 - \checkmark R_p is the portion of the total prime set which is considered in the minimum covering problem.
- Each element of R_p corresponds to the columns of the reduced prime implicant table.
- Minterm set M_p which needs to be covered (rows of the reduced prime implicant table)

$$\checkmark \qquad M_p = \overline{E}_r \cap R_p$$

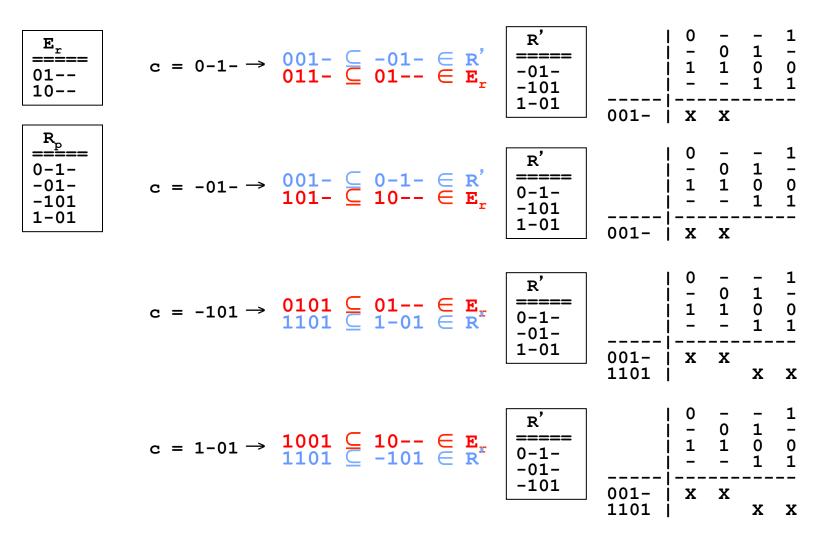
 $\checkmark \qquad m \cap E_r = \phi \, (m \in M_p)$

Reduced Prime Implicant Table Generation (3)

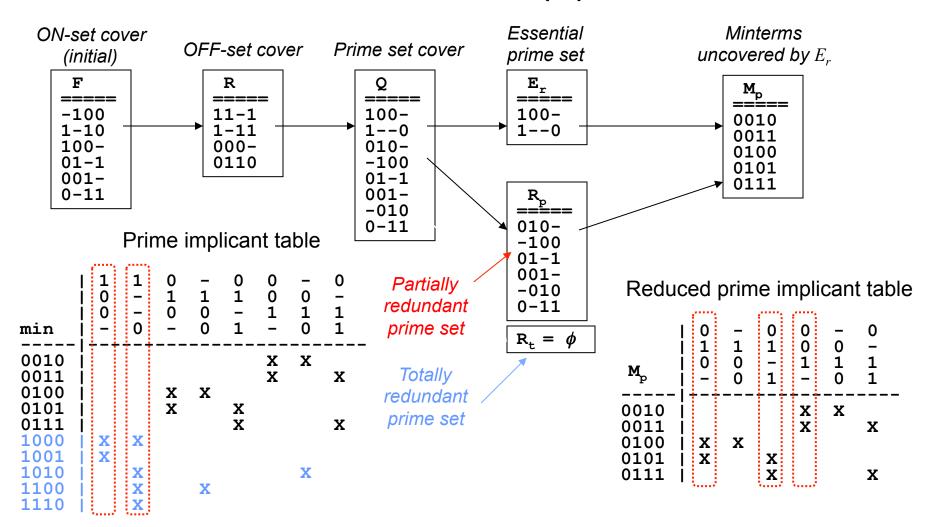
- Computation of minterm set M_p (actually, each row may represent a collection of minterms)
 - For each cube $c \in R_p$, consider the set $R' = R_p c$.
 - \blacktriangleright Recursively divide *c* into smaller cubes at its don't-care variables
 - Ex. $0-1- \rightarrow (001-,011-) \rightarrow ((0010,0011), (0110,0111))$
 - > On each divided cubes c':
 - If $c' \subseteq E_r$, then c' is not included in M_p .
 - If there exists a cube *d* ∈ *R*' such that *c*' ⊆ *d*, then all minterms included in *c*' is covered by the prime *d*. If so, add *c*' to the row and mark 'X' to <u>all columns which contain *c*'.</u> (Note that there may be several cubes which contain *c*')

If one of the two conditions above is satisfied, then c' does not have to be divided anymore.

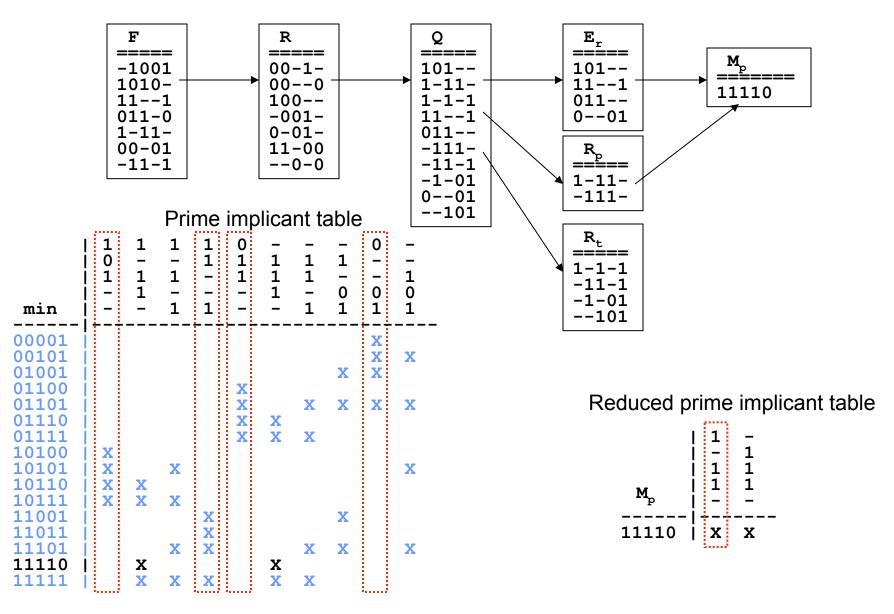
Reduced Prime Implicant Table Generation (4)



Reduced Prime Implicant Table Generation (5)



Reduced Prime Implicant Table Generation (6)



Summary on Two-Level Logic Optimization

- Two-level logic optimization is first proposed by Quine and McCluskey, and since then has been studied widely.
- Based on Quine-McCluskey method, improvements have been made in prime extraction, prime table generation, covering techniques to reduce the computation time.
- Even though the computational complexity is NPcomplete (due to prime covering problem), nearoptimal solution can be obtained in short time.
- There are heuristic algorithms which solve the prime extraction/prime covering problems iteratively.