Plane wave traveling in z-direction

ICT.H409

Optics in Information Processing III

Masahiro Yamaguchi yamaguchi.m.aa@m.titech.ac.jp

Wave optics

(1) In wave optics, parallel beam is a plane wave.
z The electromagnetic wave traveling in parallel to the z-axis can be written as
$U_{c}(x, y, z, t)=A(x, y, z) \exp (j k z-j \omega t)$
By separating the time dependent component, we have "complex amplitude":

$$
U(x, y, z)=A \exp (j k z)
$$

where $k=2 \pi / \lambda$ and λ is the wavelength.
Derive the equation of the surfaces with constant phase, and sketch them on the $x-z$ plane.

The surface with constant phase satisfies

$$
z-\Delta=m \lambda \quad \text { (If we ignore initial phase, } z=m \lambda \text {) }
$$

where Δ is a constant and m is an integer.

$$
\begin{aligned}
& \text { or, } k(z-\Delta)=2 \pi m \Rightarrow \text { Wavefront } \\
& \begin{aligned}
U(\boldsymbol{r}) & =A \exp \{j k(z-\Delta)\} \\
& =A \exp \{j(k z-\psi)\} \\
k & \text { wave number }
\end{aligned} \\
& \begin{aligned}
\psi=\frac{2 \pi \Delta}{\lambda}
\end{aligned}
\end{aligned}
$$

Plane wave traveling along the wave vector \boldsymbol{k}

$$
U(\boldsymbol{r})=A(\boldsymbol{r}) \exp \{j \phi(\boldsymbol{r})\}
$$

The surface with constant phase: $\phi(\boldsymbol{r})=$ const. $+2 \pi m$, where $\phi(\boldsymbol{r})=\boldsymbol{k} \cdot \boldsymbol{r}=k_{x} x+k_{y} y+k_{z} z$
$\boldsymbol{k}=\left(k_{x} k_{y} k_{z}\right)$: wave vector, \cdot inner product

```
Complex amplitude of plane wave:
U(r)}=A(\boldsymbol{r})\operatorname{exp}(j\boldsymbol{k}\cdot\boldsymbol{r}
    = A(r) exp{j(\mp@subsup{k}{x}{}x+\mp@subsup{k}{y}{}y+\mp@subsup{k}{z}{}z)}
```


Spherical wave

Exercise 3: (2)
The surface with constant phase satisfies

$$
r-\Delta=m \lambda
$$

Δ : constant, m : integer.

> Complex amplitude of spherical wave:

$$
U(r)=\frac{U_{0} \exp (j k r)}{r}
$$

$$
r=\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}}
$$

Wavefront

Complex amplitude at $z=z_{0}$:

$$
U(x, y)=A(x, y) \exp \{j \phi(x, y)\}
$$

Modulation of wavefront

$\frac{\text { Incident light }}{\text { transparent object Transmitted light: distorted wavefront }}$

Interference

Coherence

- If $\omega_{1} \neq \omega_{2},<\cos \left\{\left(\omega_{1}-\omega_{2}\right) t+\phi\right\}>=0$
for the observation time $\gg \frac{2 \pi}{\omega}$

$$
I(\boldsymbol{r})=A_{1}(\boldsymbol{r})^{2}+A_{2}(\boldsymbol{r})^{2}
$$

\rightarrow no interference term: incoherent (temporal)

$$
\begin{aligned}
& \text { - If } \omega_{1}=\omega_{2}, \quad \rightarrow \text { coherent } \\
& I(\boldsymbol{r})=<\left|U_{1 c}(\boldsymbol{r}, t)+U_{2 c}(\boldsymbol{r}, t)\right|^{2}> \\
& =\left|U_{1}(\boldsymbol{r})+U_{2}(\boldsymbol{r})\right|^{2} \\
& =A_{1}(\boldsymbol{r})^{2}+A_{2}(\boldsymbol{r})^{2}+2 A_{1}(\boldsymbol{r}) A_{2}(\boldsymbol{r}) \cos \left\{\phi_{1}(\boldsymbol{r})-\phi_{2}(\boldsymbol{r})\right\}
\end{aligned}
$$

- (Partially coherent)

Interference

- Interference of two wavefronts
$U_{1 c}(\boldsymbol{r}, t)=A_{1}(\boldsymbol{r}) \exp \left\{-j\left(\omega_{1} t-\phi_{1}(\boldsymbol{r})\right)\right\}$
$U_{2 c}(\boldsymbol{r}, t)=A_{2}(\boldsymbol{r}) \exp \left\{-j\left(\omega_{2} t-\phi_{2}(\boldsymbol{r})\right)\right\}$
$I(\boldsymbol{r})=<\left|U_{1 c}(\boldsymbol{r}, t)+U_{2 c}(\boldsymbol{r}, t)\right|^{2}>$
< > Ensemble average
(Temporal average)
$=A_{1}(\boldsymbol{r})^{2}+A_{2}(\boldsymbol{r})^{2}$
$+2 A_{1}(\boldsymbol{r}) A_{2}(\boldsymbol{r})<\cos \left\{\left(\omega_{1}-\omega_{2}\right) t-\left(\phi_{1}(\boldsymbol{r})-\phi_{2}(\boldsymbol{r})\right)\right\}>$
Interference term
Young's experiment

Temporally incoherent

Spatially incoherent

No interference observed

Bandwidth > 0
cf. coherence length $<\infty$

Example: Interference of two plane waves

$$
\begin{aligned}
& \phi_{1}(\boldsymbol{r})=\boldsymbol{k}_{\mathbf{1}} \cdot \boldsymbol{r}+\varphi_{1}=k z_{0}+\varphi_{1} \\
& \phi_{2}(\boldsymbol{r})
\end{aligned}=\boldsymbol{k}_{2} \cdot \boldsymbol{r}+\varphi_{2}=k \sin \theta \cdot x+k \cos \theta \cdot z_{0}+\varphi_{2}, \text { Constan } \quad \begin{aligned}
\phi_{1}(\boldsymbol{r}) & -\phi_{2}(\boldsymbol{r})=k \sin \theta \cdot x+\Delta \varphi \\
I(\boldsymbol{r}) & =A_{1}(\boldsymbol{r})^{2}+A_{2}(\boldsymbol{r})^{2}+2 A_{1}(\boldsymbol{r}) A_{2}(\boldsymbol{r}) \cos \left\{\phi_{1}(\boldsymbol{r})-\phi_{2}(\boldsymbol{r})\right\} \\
& =I_{0}(\boldsymbol{r})+I_{i}(\boldsymbol{r}) \cos (k \sin \theta \cdot x+\Delta \varphi)
\end{aligned}
$$

Interference fringe

$$
I(\boldsymbol{r})=I_{0}(\boldsymbol{r})+I_{i}(\boldsymbol{r}) \cos (k \sin \theta \cdot x+\Delta \varphi)
$$

What is the period T of the interference fringe?

Let us consider to capture the interference pattern of two plane waves U_{1} and U_{2} using a CCD image sensor. U_{1} is a plane wave traveling in parallel to z-axis, and the incident angle of U_{2} onto the CCD plane P is θ. The wavelength of the light is assumed to be λ.
(1) Derive the light intensity pattern (interference pattern) on the plane P, and draw it schematically.
(2)Draw the 2D Fourier transform of the interference pattern of (1), schematically.

CCD plane (Plane P)
(3) Derive the relationship between the spatial frequency of the interference fringe, u_{i} [cycles $/ \mathrm{m}$], and the incident angle of U_{2}, θ.

OCT (Optical Coherence Tomography)
A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T Lasser, "Optical coherence tomography-principles and applications," Reports on Progress in Physics, 239-303, (2003)

Michelson Interferometer

Diffraction and wave propagation

Diffraction Grating

2-D Fourier transform

$G(u, v)=\iint g(x, y) \exp \{-j 2 \pi(x u+y v)\} d x d y$

$\times G\left(u_{0}, v_{0}\right)$

$$
\times G\left(u_{k+1}, v_{k+1}\right)
$$

Superposition of sinusoidal gratings

High frequency components in an image correspond to large diffraction angle.

Angular spectrum
$w_{1}-w_{3}$: weights

Scalar diffraction theory

$$
U_{1}\left(x_{1}, y_{1}\right)=\frac{1}{j \lambda z} \iint_{\Sigma} U_{0}\left(x_{0}, y_{0}\right) \exp \left(j k r_{01}\right) d x_{0} d y_{0}
$$

Huygens-Fresnel Principle

Convolution with spherical wave

Fresnel approximation

$$
\begin{aligned}
& \text { If }\left|x_{0}-x_{1}\right| \ll z \text { and }\left|y_{0}-y_{1}\right| \ll z \\
& \begin{aligned}
r_{01} & =\sqrt{\left(x_{0}-x_{1}\right)^{2}+\left(y_{0}-y_{1}\right)^{2}+\left(z_{0}-z_{1}\right)^{2}} \\
& =z \sqrt{1+\left(\frac{x_{0}-x_{1}}{z}\right)^{2}+\left(\frac{y_{0}-y_{1}}{z}\right)^{2}} \\
& \cong z\left[1+\frac{1}{2}\left(\frac{x_{0}-x_{1}}{z}\right)^{2}+\frac{1}{2}\left(\frac{y_{0}-y_{1}}{z}\right)^{2}\right] \Rightarrow \text { Paraxial approximation }
\end{aligned}
\end{aligned}
$$

Spherical wave is approximated by quadratic (parabolic) wave:
Spherical wave located at a point light source located at $\left(x_{0}, y_{0}\right)$ is given by

$$
U_{1}\left(x_{1}, y_{1}\right)=\frac{\exp (j k r)}{r} \cong \frac{\exp (j k z)}{z} \exp \left\{j \frac{k}{2 z}\left[\left(x_{0}-x_{1}\right)^{2}+\left(y_{0}-y_{1}\right)^{2}\right]\right\}
$$

Fresnel diffraction

$U_{1}\left(x_{1}, y_{1}\right)=\frac{\exp (j k z)}{j \lambda z} \iint_{\Sigma} U_{0}\left(x_{1}, y_{1}\right) \exp \left\{j \frac{k}{2 z}\left[\left(x_{0}-x_{1}\right)^{2}+\left(y_{0}-y_{1}\right)^{2}\right]\right\} d x_{0} d y_{0}$

Rewriting the Fresnel diffraction equation

$$
\begin{aligned}
U_{1}\left(x_{1}, y_{1}\right) & =\frac{\exp (j k z)}{j \lambda z} \iint_{\Sigma} U_{0}\left(x_{0}, y_{0}\right) \exp \left\{j \frac{k}{2 z}\left[\left(x_{0}-x_{1}\right)^{2}+\left(y_{0}-y_{1}\right)^{2}\right]\right\} d x_{0} d y_{0} \\
& =\frac{\exp (j k z)}{j \lambda z} \iint_{\Sigma} U_{0}\left(x_{0}, y_{0}\right) \exp \left\{j \frac{k}{2 z}\left(x_{0}^{2}+y_{0}^{2}\right)\right\} \exp \left\{j \frac{k}{2 z}\left(x_{1}^{2}+y_{1}^{2}\right)\right\} \\
& \exp \left\{j \frac{k}{z}\left(x_{0} x_{1}+y_{0} y_{1}\right)\right\} d x_{0} d y_{0} \\
& =C \iint_{\Sigma} U_{0}\left(x_{0}, y_{0}\right) \exp \left\{j \frac{k}{2 z}\left(x_{0}^{2}+y_{0}^{2}\right)\right\} \exp \left\{j \frac{k}{z}\left(x_{0} x_{1}+y_{0} y_{1}\right)\right\} d x_{0} d y_{0}
\end{aligned}
$$

Fourier Transform of $U_{0}\left(x_{0}, y_{0}\right) \exp \left\{j \frac{k}{2 z}\left(x_{0}^{2}+y_{0}^{2}\right)\right\}$

Fraunhofer Diffraction

If Z is very large, $\quad \frac{k}{2 z}\left(x_{0}^{2}+y_{0}^{2}\right)$ is almost constant

$U_{1}=\left[\right.$ Fourier transform of $\left.U_{0}\right] \cdot$ Phase term Light intensity $=\mid$ Fourier transform of $\left.U_{0}\right|^{2}$

Imaging through a lens system

Image formation by a lens system (1)

Lens aperture = Pupil function

Transformation of wavefront Spherical wave \rightarrow Plane wave Plane wave \rightarrow Spherical wave
Phase modulation: $\phi_{L}\left(x_{l}, y_{l}\right)=\frac{k}{2 f}\left(x_{l}^{2}+y_{l}^{2}\right)$

$\mathrm{P}_{1} \rightarrow \mathrm{~L}_{1}$ Fresnel Diffraction

$$
U_{l}\left(x_{l}, y_{l}\right)=\frac{\exp \left(j k d_{1}\right)}{j \lambda d_{1}} \iint_{-\infty}^{\infty} U_{1}\left(x_{1}, y_{1}\right) \exp \left\{j \frac{k}{2 d_{1}}\left[\left(x_{l}-x_{1}\right)^{2}+\left(y_{l}-y_{1}\right)^{2}\right]\right\} d x_{1} d y_{1}
$$

$\mathrm{L}_{1} \rightarrow \mathrm{~L}_{2}$ Phase modulation by lens
$U_{l}{ }^{\prime}\left(x_{l}, y_{l}\right)=U_{l}\left(x_{l}, y_{l}\right) P\left(x_{l}, y_{l}\right) \exp \left\{-j \frac{k}{2 f}\left(x_{l}{ }^{2}+y_{l}{ }^{2}\right)\right\}$
$\mathrm{L}_{2} \rightarrow \mathrm{P}_{2}$ Fresnel Diffraction
$U_{2}\left(x_{2}, y_{2}\right)=\frac{\exp \left(j k d_{2}\right)}{j \lambda d_{2}} \iint_{-\infty}^{\infty} U_{l}{ }^{\prime}\left(x_{l}, y_{l}\right) \exp \left\{j \frac{k}{2 d_{2}}\left[\left(x_{2}-x_{l}\right)^{2}+\left(y_{2}-y_{l}\right)^{2}\right]\right\} d x_{l} d y_{l}$
Wavefront at P_{1} and P_{2} planes

$$
U_{2}\left(x_{2}, y_{2}\right)=A \iint_{-\infty}^{\infty} h\left(x_{2}, y_{2} ; x_{1}, y_{1}\right) U_{1}\left(x_{1}, y_{1}\right) d x_{1} d y_{1}
$$

$$
h\left(x_{2}, y_{2} ; x_{1}, y_{1}\right)=\frac{1}{\lambda^{2} d_{1} d_{2}} \exp \left[j \frac{k}{2 d_{2}}\left(x_{2}^{2}+y_{2}^{2}\right)\right] \exp \left[j \frac{k}{2 d_{1}}\left(x_{1}^{2}+y_{1}^{2}\right)\right]
$$

$$
\iint_{-\infty}^{\infty} P(x, y) \exp \left[j \frac{k}{2}\left(\frac{1}{d_{1}}+\frac{1}{d_{2}}-\frac{1}{f}\right)\left(x^{2}+y^{2}\right)\right]
$$

$$
\exp \left[-j k\left\{\left(\frac{x_{1}}{d_{1}}+\frac{x_{2}}{d_{2}}\right) x+\left(\frac{y_{1}}{d_{1}}+\frac{y_{2}}{d_{2}}\right) y\right\}\right] d x d y
$$

Optical Fourier transform and Coherent optical filtering

When $d_{1}=f$ and $d_{2}=f$,

$$
U_{2}\left(x_{2}, y_{2}\right)=A \iint_{-\infty}^{\infty} U_{1}\left(x_{1}, y_{1}\right) \exp \left\{j \frac{2 \pi}{\lambda f}\left[x_{1} x_{2}+y_{1} y_{2}\right]\right\} d x_{1} d y_{1}
$$

$$
u=x_{2} / \lambda f, v=y_{2} / \lambda f
$$

$$
U_{2}(u, v)=C \boldsymbol{F}\left\{U_{1}\left(x_{1}, y_{1}\right)\right\}
$$

Optical Fourier Transform

Summary

- Complex amplitude of light wave
- Plane wave, spherical wave
- Wavefront
- Complex amplitude modulation
- Interference
- Superposition of two waves
- Coherence
- "Angle corresponds to spatial frequency"
- Diffraction and wave propagation
- Convolution
- Fresnel approximation
- Fraunhofer approximation
- Angular spectrum
- Image formation by a lens system

Phase contrast imaging

- Phase shift of zero frequency component

```
f(x,y)=\operatorname{exp}{j\phi(x,y)}\approx1+j\phi(x,y)
(\phi(x,y)<< 1)
```

$g(x, y)=\exp \left(j \frac{\pi}{2}\right)+j \phi(x, y)=j+j \phi(x, y)$
$I(x, y)=|g(x, y)|^{2} \approx 1+2 \phi(x, y)$

