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VLSI and Computer System  

 VLSI (Very Large Scale Integrated Circuits) 
 Computer System  
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Analog Digital 

A/D 

D/A 

Sensor etc. 

Environment FPGA 

Computer System / Embedded System / VLSI … 
Architecture : Microprocessor / Deep Neural Network … 
Hardware     : Logic Functions, Hardware Description Language … 
Software      : Algorithm, Real Time Operating System … 
Design         : Synthesis, Compiler, Physical Design … 

Display etc. 
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VLSI Design / Manufacturing 

Integration of Various Technologies 
 Device Manufacture 

– Make transistors small 
– Mask Design, Exposure, Polishing, Dicing 

 Circuit Design, Layout Design 
– High Speed, Low Power, Reliability  

 Packaging, Printed Circuit Board 
– Wire Bonding 

 System Design 
 Software Design 
 Marketing 
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Light source 

Illumination lens 

Mask 

Projection lens 

Fluid 
Photoresist 

Wafer 



VLSI Design (Synthesis) 
 Design Automation 

– Essential in design productivity improvement 
 Problem Definition 

– Inputs, outputs, and objectives 
– Design flow and Hierarchical synthesis 

 many sub-problems 
 Optimum solution for sub-problem may not be good for whole problem 
– Need to update Design methodology and Design flow  

 
 Problem : Find an optimum solution 

– Is there an exact algorithm for the problem? 
 Yes (in most cases for combinatorial problem) 
 Enumerating all the cases and pick a best one 

– Impractical for large instances 
– Is there a practical exact algorithm for the problem? 

 NO (except limited cases) 
 Need sophisticated intelligent approach 

– Heuristic in most cases 
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Complexity Theory 

 Background of Algorithm Design 
– P and NP 
– NP-complete 
– NP-hard 
– Polynomial Time Reduction 
– Nondeterministic Polynomial Time Algorithm 
– (Deterministic) Polynomial Time Algorithm 
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NP-completeness 
 Decision Problem (Yes/No Problem) 

– NP : Set of Decision problems that have 
 Nondeterministic Polynomial time algorithm 

– P: Set of Decision problems that have 
 (Deterministic) Polynomial time algorithm 

– NP-C: hardest problems in NP 
 If a problem in NP-C can be solved in polynomial time, 
        then any problem in NP can be solved in polynomial time 
 A decision problem is said to be NP-complete if it is in NP-C 
 SAT, 3-SAT, COL, HG, IS, TS, … 

 Fact: P⊆ NP 
 Conjecture: P ≠ NP 
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P 

NP 
or NP-C 

P≠NP P=NP (=NP-C) 

[Garey and Johnson, "Computers and Intractability, A Guide to the Theory of NP-Completeness", Freeman and Co., 1979] 



Correct 
Answer 

Algorithm 
Output 

YES YES 
No No 

Nondeterministic Polynomial Time Algorithm 

 Typical Structure 
– Step 1 (nondeterministic) 

  Generate a evidence in polynomial time 
(Pick up one arbitrary among exponential candidates) 

– Step 2 (deterministic) 
  Check the evidence in polynomial time 

– If the evidence is correct, then output YES 
– If the evidence is incorrect, then output NO 

 Behavior of Correct Nondeterministic Algorithm 

Problem: Is Graph a Hamiltonian? 

Evidence : sequence of vertices 
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Evidence (Proof) for YES 
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Problem: Is Graph a Hamiltonian? 
Evidence : sequence of vertices 

Problem: Is NOT Graph a Hamiltonian? 
Evidence : ??? 

 Problem: Is Graph Hamiltonian? 
– NP 
– An evidence that shows the graph is Hamiltonian which can 

be checked in polynomial time exists 
 Problem: Is NOT Graph Hamiltonian? 

– NP ??? 
– An evidence that the graph is not Hamiltonian is not trivial 
– What is an evidence that shows the graph is not Hamiltonian? 



𝚷𝚷𝟏𝟏 ∝ 𝚷𝚷𝟐𝟐 
Easy Easy 

Difficult Difficult 

Polynomial Time Reduction 
 Provides difficulty relation between problems 

– Which is not difficult? 
 Polynomial Time Recution of Problem ( Π1 ∝ Π2 ) 

– Instance of Π1 can be converted to instance of Π2 in polynomial 
time while maintaining Yes/No property  

– Problem Π1 can be solved in polynomial time by utilizing 
(hypothetical) polynomial time algorithm for problem Π2  
 If  Π2 is solved in polynomial time, then Π1 can be solved in 

polynomial time 
– Π2 is not easier than Π1 (same or more difficult) 

 
 

Π1 Instances 𝐼𝐼1 

YES 
YES 

NO NO 

Π2 Instances 𝐼𝐼2 

𝜙𝜙 : 𝐼𝐼1 ⟶ 𝐼𝐼2 
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𝚷𝚷 ∝ 𝚷𝚷∗ 
Easy Easy 

Difficult Difficult 

Proof of NP-completeness 
 NP-complete problem Π∗: Π ∈∀ NP, Π ∝ Π∗ 

– Not easier than any problem in NP 
 
 

 
 Proof of NP-completeness of Decision Problem Π 

– Pick up NP-complete problem Π∗ 
– Show Π∗ ∝ Π 

 Π is not easier than Π∗, that means Π is NP-complete 
 Incorrect Proof 

– Show Π ∝ Π∗ 
– It is trivial by definition 
– It does not mean that Π is NP-complete 
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Π∗ Instances 

YES 
YES 

NO NO 

Π Instances 



NP-hardness 
 Optimization problem 

– is neither in NP nor in NP-C 
– is not said to be NP-complete 
– Is said to be NP-hard if a related decision problem is NP-complete 

 No polynomial time algorithm for NP-hard problem if P≠NP 
 If a problem is NP-hard, then 

– Approximation algorithm or Heuristic algorithm are pursued 

Opt. Problem etc. 

NP-hard 
Other types of problem 

Problem 

Decision Problem 

[Garey and Johnson, "Computers and Intractability, A Guide to the Theory of NP-Completeness", Freeman and Co., 1979] 

P 

NP 
NP-C 

P≠NP 
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First Step of Algorithm Design 

 Check whether problem is easy or not? 
– Difficult = NP-hard, NP-complete 

 Design heuristic 
– Easy = P (or decision version is in P) 

 Design exact polynomial time algorithm 
 Reduce time and space complexity 

 Most of practical problems are difficult 
– NP-hardness seems trivial .... 
           but proof of NP-hardness is not easy 
– So, proof is often skipped, recently 

 
 In the following 

– P = problem solvable in polynomial time 
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Logic Synthesis 

 Get a small logic circuit that realizes a given 
Boolean function 
– NP-hard problem 

 Smallest logic circuit is not necessarily optimum 
–  Objectives are Size, Delay, Power and etc. 

 
 Two-level logic circuit synthesis 

– NOT-AND-OR (Sum-of-Products) form 
 Multi-level logic circuit synthesis 
 Sequential logic circuit synthesis 

13 



Equivalent Implementation 

 What is the best implementation? 
– depends …  varies … 
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ABC X Y Z 

000 0 0 1 

001 0 1 0 

010 0 0 1 

011 0 1 0 

100 0 0 1 

101 0 1 0 

110 1 1 0 

111 1 1 0 

A 
B 
C Z 

C 
B Y 

X 

Z 

A 

= 
14 
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Boolean Logic Properties 
 Commutativity 

– A  B = B A 
– A + B = B + A 

A B AND OR 
0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 1 1 

Truth Table 

B 
A 

A 
B 

A 
B 

B 
A 

B A AND OR 
0 0 0 0 
1 0 0 1 
0 1 0 1 
1 1 1 1 
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Boolean Logic Properties (2) 
 Associativity 

– ( A    B )    C = A    ( B    C ) =  A    B    C 
– ( A + B ) + C = A + ( B + C ) = A + B + C 

A 
B 
C 

Z 

A 
B 
C 

Z 

B 
C 

A Z 

ABC X Y AND 
000 0 0 0 
001 0 0 0 
010 0 0 0 
011 0 1 0 
100 0 0 0 
101 0 0 0 
110 1 0 0 
111 1 1 1 

X 

Y 

ABC X Y OR 
000 0 0 0 
001 0 1 1 
010 1 1 1 
011 1 1 1 
100 1 0 1 
101 1 1 1 
110 1 1 1 
111 1 1 1 
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Boolean Logic Properties (3) 
 Distributivity 1 

– A  ( B + C ) = ( A  B ) + ( A  C ) 

C 
A 
B 
A 

C 
B 
A 

a(b+c) = ab+ac ABC X Y1 Y2 Z 
000 0 0 0 0 
001 1 0 0 0 
010 1 0 0 0 
011 1 0 0 0 
100 0 0 0 0 
101 1 0 1 1 
110 1 1 0 1 
111 1 1 1 1 

X 

Y1 

Y2 

Z 

Z 

Truth Table 
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Boolean Logic Properties (4) 
 Distributivity 2 

– A + ( B  C ) = ( A + B )  ( A + C ) 

C 
A 
B 
A 

C 
B 
A 

a+bc  != (a+b)(a+c) ABC X Y1 Y2 Z 
000 0 0 0 0 
001 0 0 1 0 
010 0 1 0 0 
011 1 1 1 1 
100 0 1 1 1 
101 0 1 1 1 
110 0 1 1 1 
111 1 1 1 1 

Truth Table 

X 

Y1 

Y2 

Z 

Z 

18 



10/3/2016 Communications and Computer Engineering II 

Boolean Logic Properties (5) 
 Idempotency 

– A    A = A 
– A + A = A         

A X 

A X 

A X 

a + a = 2a 

a * a = a2 

A B AND OR X=A 
0 0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 1 1 1 

Truth Table 
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Boolean Logic Properties (6) 
 Absorptivity 

– A  ( A + B ) = A + ( A  B ) = A 

A 

B 

A 

B 

A 

A B AND OR X=A 
0 0 0 0 0 
0 1 0 1 0 
1 0 0 1 1 
1 1 1 1 1 

Truth Table X 

X 

X 
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Boolean Logic Properties (7) 

 NOT Operation  
– A v A = 1 
– A ^ A = 0  

 Double Negative Elimination  
– A = A 

A A 
A 

A A = 

A A A 
0 1 0 
1 0 1 

Truth Table 
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Boolean Logic Properties (8) 
 Constant Operation 

– A  0 = 0 
– A  1 = A 
– A + 0 = A 
– A + 1 = 1 

1 
A 
0 
A 

A 

1 
1 
A 
0 
A 

0 

A 

A B AND OR 
0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 1 1 

Truth Table 
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Boolean Logic Properties (10) 
 De Morgan’s Law 

– A  B   = A + B 
– A + B = A  B 

B 
A 

B 
A 

B 
A 

B 
A 

A B A B X Y 
0 0 1 1 1 1 
0 1 1 0 1 0 
1 0 0 1 1 0 
1 1 0 0 0 0 

X 
Truth Table 

X 

Y Y 
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= (A B  + A B + A B)C 
= (A B  + A B + A B  + AB)C 
= ((A B + A B) + (A B  + AB ))C 
= (A (B + B) + (A + A)B )C 
= (A + B )C 
=  AB  C 
= 

Equivalent Transformation 

A 

B 

C 

C 
B 
A 

= 
 AB + C 

A B C + A B C + A B C 
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 Canonical representation 
– Unique representation 

 Disjunctive (NOT-AND-OR) Normal Form  
 

 Conjunctive (NOT-OR-AND) Normal Form  
 
 

– Representation is unique when the variable order is 
fixed 

– The circuit size is exponential in terms of the number 
of input variables in general 

Canonical Representation 

e.g. A B C + A B C + A B C 

e.g. (A + B + C)(A v B v C)(A v B v C ) 
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Example : Summation 

 1-bit Adder (Half-Adder) 
 A+B 

– A + B = C  (a + b = c s ) 
– 0 + 0 = 0 (0 + 0 = 00) 
– 0 + 1 = 1 (0 + 1 = 01) 
– 1 + 0 = 1 (1 + 0 = 01) 
– 1 + 1 = 2 (1 + 1 = 10) 

a b carry sum 
0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 1 0 

Truth Table 

a 

b 
carry 

sum 

Half 
Adder 

a 

b 

sum 

carry 
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Exclusive-OR 

AND 



n-bit Adder 

 n-bit adder  
– A : an … a2 a1 a0 
– B : bn … b2 b1 b0 

 Design by NOT-AND-OR form for each output 
becomes too big 

 Hierarchical Design  
– Use 1-bit adders 
– Input has carry from lower bit 

 … 
bn 

b0 
b1 

... 
an 

a0 
a1 

sn 
c 

s1 
… 
s0 

n-bit 
Adder 
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Hierarchical Design of Adder 

 n-bit Adder 
– A : an … a2 a1 a0 
– B : bn … b2 b1 b0 

a1 a0 
+ b1 b0 
c1 s1 s0 

c0 
Half 

Adder 

a0 

b0 

s0 

c0 

bit-0 

Full 
Adder 

c0 
a1 

c1 b1 

s1 

bit-1 

bit-1 : (c1,s1) = a1 + b1 + c0 
bit-0 : (c0,s0) = a0 + b0 
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Full Adder 

 1-bit adder with carry 
– Input includes a carry from lower bit 

c(i-1) ai bi ci si 
0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1 

Truth Table 
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Half 
Adder 

ai 

bi 

c(i-1) si 

ci 

a 

b c 

s 

Half 
Adder 

a 

b c 

s 

Full Adder 



n-bit Adder (RCA) 

 Ripple carry adder 
– Serially connected n full-adder 
– Carry signal may propagate along FAs 
– Small size, but slow speed 

 
 

… 
bn 

b0 
b1 

... 
an 

a0 
a1 

sn 
c 

s1 
… 
s0 

n-bit 
Adder 
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n-bit Adder (CLA) 

 Carry Look-ahead Adder 
– Logic that detects whether carry propagates or not is 

inserted 
– large size, but fast 
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n-bit Adder (CLA) (2) 

CL1 = a0 ^ b0  
CL2 = (a1 ^ b1) v         (c0 ^ a1) v         (c0 ^ b1) 
        = (a1 ^ b1) v (a0 ^ b0 ^ a1) v (a0 ^ b0 ^ b1)  

c(i-1) ai bi ci si 
0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1 

Truth Table 
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Logic Minimization 
 The size of a circuit is estimated by the number 

of transistors in the circuit 
 The length of formula (the number of literals) 

corresponds to the number of transistors 
 The minimization of the length of formula 

– NP-hard 
 
 Basic terminology 

– Complement of variable x : x’, x,   x 
  x = 0    x’ = 1 
  x = 1    x’ = 0 

– Literal  
  Boolean variable x or its complement x’ 

CL2 = (a1 ^ b1) v         (c0 ^ a1) v         (c0 ^ b1) 
        = (a1 ^ b1) v (a0 ^ b0 ^ a1) v (a0 ^ b0 ^ b1)  
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Boolean Function Representation  

 Boolean Function f : BN  B 
– Input variables    : x1, x2, …, xN    ( in B) 
– Output variable   : f  (in B) 

 
–  Input vector x = (x1, x2, …, xN ) 

 A minterm 
 A node of N-dimensional hypercube 

– (00…0), (00…1), …, (11…1) 
 ON-set   : x  such that  f(x)=1 
 OFF-set : x  such that  f(x)=0 

34 10/6/2016 Communications and Computer Engineering II 

(000) (100) 

(010) (110) 

(001) 

(011) (111) 
Hypercube 

a 

b 
c (abc) 

(101) 



Boolean Space 

 Boolean space BN 

– represented by N-dimensional hypercube 
 edge iff Hamming distance = 1 

B1 

(0) (1) B2 

B3 B4 

(00) (10) 

(01) (11) 

(000) (100) 

(010) (110) 

(001) (101) 

(011) (111) 
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Karnaugh Map 

 For Two-level Boolean Logic Minimization 
– by manual for small functions 

 Karnaugh map 
– Each square corresponds to a minterm 
– Hamming distance of adjacent squares is 1 

 a / b 0 1 
0 1 0 
1 0 1 

ab / c 0 1 
00 0 0 
01 1 0 
11 1 1 
10 0 1 

ab / cd 00 01 11 10 
00 0 0 1 1 
01 1 1 1 1 
11 0 1 1 0 
10 0 0 1 1 

f = ab v a’b’ 

f = ac v bc’ f = a’b v bd v b’c 
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Karnaugh Map (2) 

ab / c 0 1 
00 0 0 
01 1 0 
11 1 1 
10 0 1 

a b c f 
0 0 0 0 
0 0 1 0 
0 1 0 1 
0 1 1 0 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

Truth table 
Karnaugh Map 

B3 

(000) (100) 

(010) (110) 

(001) 

(101) 

(011) (111) 
Hypercube 

a 

b 
c (abc) 

 Logic Minimization 
– Find a maximal rectangle in Karnaugh Map 

 Should correspond a hypercube that consists of ON-set 

f = a’bc’ v ab’c v abc’ v abc = ac v bc’ 
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Karnaugh Map (3) 

 Help to find Factoring of Two-level logic function 
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ab’c’d 1001 
ab’cd 1011 
 ab’d 10-1 

ab’d’ 10-0 
ab’d 10-1 
   ab’ 10-- 

ab / cd 00 01 11 10 
00 
01 
11 
10 

ab / cd 00 01 11 10 
00 
01 
11 
10 

a’bc’d v ab’cd = ab’d(c+c’)= ab’d a’bd v ab’d = ab’(d+d’)= ab’ 



10/6/2016 Communications and Computer Engineering II 

Sequential Circuit Implementation 

 Performance depends on 
– State-machine itself 
– Time to transit from one state to another  

 Correct output must be recognized 
 Correct state must be stored 

 

Combinational 
 circuit outputs inputs 

Memory 
element next-state current-state 
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Memory Function 

0 0 1 1 

40 

 Dynamic Memory (Capacitance) 
– Data lifetime is limited due to leakage 

 Static Memory (Inverter loop) 
– Two stable states 

 
 
 

– Meta-stable state might occur by delay 
 Continuous signal transitions  

0 1 

stable 

meta-stable 

0 1 
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Memory 

 Data Storage 
– Optimized to achieve high speed, small area, low 

power, etc 
 Dynamic Random Access Memory (DRAM) 
 Static Random Access Memory (SRAM) 
 Flash Memory 

 
 

 Temporal memory for computation 
– High speed oriented 

 Latch, Flip-Flop, Register 
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Latch (Inverter Loop) 

 Inverter loop with state control logic 
 Behavior of Latch (transparent phase) 

– The state (output) of inverter loop is controlled by 
inputs 

0 
1 

1 0 

0 

1 

1 
0 

0 
1 

1 

0 
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Latch (Inverter Loop) (2) 

 Behavior of Latch (opaque phase) 
– The state of inverter loop is kept when both input is 1 

0 

1 

1 

0 
0 

1 

1 

0 
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Latch (Inverter Loop) (3) 

 Behavior of Latch 
– Unexpected inputs (0,0) 

0 

0 

1 

1 
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Behavior of D-Latch 

 Delay type Latch (D-Latch) with clock and load 
– State changes during transparent phase 
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Timing Chart 

clock 

load 

D 
Q 

0 1 
0 1 0 
1 

0 1 
0 

1 0 
1 

0 
1 

0 
1 

opaque 
transparent 

1 
1 

0 
0 
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Flip-Flop (D-FF) 

 Delay type Flip-Flop 
– Two inverter loop (master and slave) 
– Next State Q = input D (control signal) 
– State changes at clock-edge only  

Q(i)   D(i) 0 1 
0 0 1 
1 0 1 

Q(i+1) 

D Q 

Q 

clk 

46 

master latch slave latch 
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R 

Behavior of D-FF 

0 

1 0 

1 

0 1 

1 
0 1 

1 

0 
1 1 

1 
0 0 

1 
1 0 

1 
1 1 

Q 
Q 1 

Q’ 
Q’ 0 1 

1 0 

0 

1 

1 

0 

0 

1 

Timing Chart 
clock 

D 

Q 

R 
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1 

1 

1 

0 

1 
Q 

0 
Q 

0 0 

1 
1 

0 
0 
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Example: Counter by Adder and D-FF 
 Count the number of clock inputs 

– State = #clock inputs (8 states = 3 bits) 
– Next state = Current state + 1 

Q2Q1Q0 C2 S2S1S0 
000 0 001 
001 0 010 
010 0 011 
011 0 100 
100 0 101 
101 0 110 
110 0 111 
111 1 000 

current 
 state 

3bit Adder 
output next state 
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input/output 

Sequential Circuit Implementation 
 Determine Finite State Machine 
 Determine State Assignment 
 Synthesis combinational circuit  

– Generate appropriate control signals and outputs 
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0001 1000 

0010 0100 

0/0 

0/1 

0/1 

0/1 

1/0 

1/1 1/1 

1/0 

Finite State Machine 
     with state assignment Sequential Circuit  

state 



Digital Integrated Circuits Synthesis 

 Exploration of Huge Design Space 
 Increase of computation power enable us to use 

computation power rich algorithms 
– Iterative improvement 
– Stochastic search 
– Analytical  method   

 Design space design 
– Abandon useless area 
– Focus on promising area 
– Efficiency 
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