
Digital Integrated Circuits 2:
Synthesis

Atsushi Takahashi
Department of Information and Communications Engineering

School of Engineering
Tokyo Institute of Technology

10/6/2016 Communications and Computer Engineering II 1

VLSI and Computer System

 VLSI (Very Large Scale Integrated Circuits)
 Computer System

10/6/2016 Communications and Computer Engineering II

Analog Digital

A/D

D/A

Sensor etc.

Environment FPGA

Computer System / Embedded System / VLSI …
Architecture : Microprocessor / Deep Neural Network …
Hardware : Logic Functions, Hardware Description Language …
Software : Algorithm, Real Time Operating System …
Design : Synthesis, Compiler, Physical Design …

Display etc.

2

VLSI Design / Manufacturing

Integration of Various Technologies
 Device Manufacture

– Make transistors small
– Mask Design, Exposure, Polishing, Dicing

 Circuit Design, Layout Design
– High Speed, Low Power, Reliability

 Packaging, Printed Circuit Board
– Wire Bonding

 System Design
 Software Design
 Marketing

3 10/6/2016 Communications and Computer Engineering II

Light source

Illumination lens

Mask

Projection lens

Fluid
Photoresist

Wafer

VLSI Design (Synthesis)
 Design Automation

– Essential in design productivity improvement
 Problem Definition

– Inputs, outputs, and objectives
– Design flow and Hierarchical synthesis

 many sub-problems
 Optimum solution for sub-problem may not be good for whole problem
– Need to update Design methodology and Design flow

 Problem : Find an optimum solution

– Is there an exact algorithm for the problem?
 Yes (in most cases for combinatorial problem)
 Enumerating all the cases and pick a best one

– Impractical for large instances
– Is there a practical exact algorithm for the problem?

 NO (except limited cases)
 Need sophisticated intelligent approach

– Heuristic in most cases

10/6/2016 Communications and Computer Engineering II 4

Complexity Theory

 Background of Algorithm Design
– P and NP
– NP-complete
– NP-hard
– Polynomial Time Reduction
– Nondeterministic Polynomial Time Algorithm
– (Deterministic) Polynomial Time Algorithm

5 10/6/2016 Communications and Computer Engineering II

NP-completeness
 Decision Problem (Yes/No Problem)

– NP : Set of Decision problems that have
 Nondeterministic Polynomial time algorithm

– P: Set of Decision problems that have
 (Deterministic) Polynomial time algorithm

– NP-C: hardest problems in NP
 If a problem in NP-C can be solved in polynomial time,
 then any problem in NP can be solved in polynomial time
 A decision problem is said to be NP-complete if it is in NP-C
 SAT, 3-SAT, COL, HG, IS, TS, …

 Fact: P⊆ NP
 Conjecture: P ≠ NP

10/6/2016 Communications and Computer Engineering II 6

P

NP
or NP-C

P≠NP P=NP (=NP-C)

[Garey and Johnson, "Computers and Intractability, A Guide to the Theory of NP-Completeness", Freeman and Co., 1979]

Correct
Answer

Algorithm
Output

YES YES
No No

Nondeterministic Polynomial Time Algorithm

 Typical Structure
– Step 1 (nondeterministic)

 Generate a evidence in polynomial time
(Pick up one arbitrary among exponential candidates)

– Step 2 (deterministic)
 Check the evidence in polynomial time

– If the evidence is correct, then output YES
– If the evidence is incorrect, then output NO

 Behavior of Correct Nondeterministic Algorithm

Problem: Is Graph a Hamiltonian?

Evidence : sequence of vertices

10/6/2016 Communications and Computer Engineering II 7

Evidence (Proof) for YES

10/6/2016 Communications and Computer Engineering II 8

Problem: Is Graph a Hamiltonian?
Evidence : sequence of vertices

Problem: Is NOT Graph a Hamiltonian?
Evidence : ???

 Problem: Is Graph Hamiltonian?
– NP
– An evidence that shows the graph is Hamiltonian which can

be checked in polynomial time exists
 Problem: Is NOT Graph Hamiltonian?

– NP ???
– An evidence that the graph is not Hamiltonian is not trivial
– What is an evidence that shows the graph is not Hamiltonian?

𝚷𝚷𝟏𝟏 ∝ 𝚷𝚷𝟐𝟐
Easy Easy

Difficult Difficult

Polynomial Time Reduction
 Provides difficulty relation between problems

– Which is not difficult?
 Polynomial Time Recution of Problem (Π1 ∝ Π2)

– Instance of Π1 can be converted to instance of Π2 in polynomial
time while maintaining Yes/No property

– Problem Π1 can be solved in polynomial time by utilizing
(hypothetical) polynomial time algorithm for problem Π2
 If Π2 is solved in polynomial time, then Π1 can be solved in

polynomial time
– Π2 is not easier than Π1 (same or more difficult)

Π1 Instances 𝐼𝐼1

YES
YES

NO NO

Π2 Instances 𝐼𝐼2

𝜙𝜙 : 𝐼𝐼1 ⟶ 𝐼𝐼2

10/6/2016 Communications and Computer Engineering II 9

𝚷𝚷 ∝ 𝚷𝚷∗
Easy Easy

Difficult Difficult

Proof of NP-completeness
 NP-complete problem Π∗: Π ∈∀ NP, Π ∝ Π∗

– Not easier than any problem in NP

 Proof of NP-completeness of Decision Problem Π

– Pick up NP-complete problem Π∗
– Show Π∗ ∝ Π

 Π is not easier than Π∗, that means Π is NP-complete
 Incorrect Proof

– Show Π ∝ Π∗
– It is trivial by definition
– It does not mean that Π is NP-complete

10/6/2016 Communications and Computer Engineering II 10

Π∗ Instances

YES
YES

NO NO

Π Instances

NP-hardness
 Optimization problem

– is neither in NP nor in NP-C
– is not said to be NP-complete
– Is said to be NP-hard if a related decision problem is NP-complete

 No polynomial time algorithm for NP-hard problem if P≠NP
 If a problem is NP-hard, then

– Approximation algorithm or Heuristic algorithm are pursued

Opt. Problem etc.

NP-hard
Other types of problem

Problem

Decision Problem

[Garey and Johnson, "Computers and Intractability, A Guide to the Theory of NP-Completeness", Freeman and Co., 1979]

P

NP
NP-C

P≠NP

10/6/2016 Communications and Computer Engineering II 11

First Step of Algorithm Design

 Check whether problem is easy or not?
– Difficult = NP-hard, NP-complete

 Design heuristic
– Easy = P (or decision version is in P)

 Design exact polynomial time algorithm
 Reduce time and space complexity

 Most of practical problems are difficult
– NP-hardness seems trivial
 but proof of NP-hardness is not easy
– So, proof is often skipped, recently

 In the following

– P = problem solvable in polynomial time

12 10/6/2016 Communications and Computer Engineering II

10/6/2016 Communications and Computer Engineering II

Logic Synthesis

 Get a small logic circuit that realizes a given
Boolean function
– NP-hard problem

 Smallest logic circuit is not necessarily optimum
– Objectives are Size, Delay, Power and etc.

 Two-level logic circuit synthesis

– NOT-AND-OR (Sum-of-Products) form
 Multi-level logic circuit synthesis
 Sequential logic circuit synthesis

13

Equivalent Implementation

 What is the best implementation?
– depends … varies …

10/3/2016 Communications and Computer Engineering II

ABC X Y Z

000 0 0 1

001 0 1 0

010 0 0 1

011 0 1 0

100 0 0 1

101 0 1 0

110 1 1 0

111 1 1 0

A
B
C Z

C
B Y

X

Z

A

=
14

10/3/2016 Communications and Computer Engineering II

Boolean Logic Properties
 Commutativity

– A B = B A
– A + B = B + A

A B AND OR
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

Truth Table

B
A

A
B

A
B

B
A

B A AND OR
0 0 0 0
1 0 0 1
0 1 0 1
1 1 1 1

15

10/3/2016 Communications and Computer Engineering II

Boolean Logic Properties (2)
 Associativity

– (A B) C = A (B C) = A B C
– (A + B) + C = A + (B + C) = A + B + C

A
B
C

Z

A
B
C

Z

B
C

A Z

ABC X Y AND
000 0 0 0
001 0 0 0
010 0 0 0
011 0 1 0
100 0 0 0
101 0 0 0
110 1 0 0
111 1 1 1

X

Y

ABC X Y OR
000 0 0 0
001 0 1 1
010 1 1 1
011 1 1 1
100 1 0 1
101 1 1 1
110 1 1 1
111 1 1 1

16

10/3/2016 Communications and Computer Engineering II

Boolean Logic Properties (3)
 Distributivity 1

– A (B + C) = (A B) + (A C)

C
A
B
A

C
B
A

a(b+c) = ab+ac ABC X Y1 Y2 Z
000 0 0 0 0
001 1 0 0 0
010 1 0 0 0
011 1 0 0 0
100 0 0 0 0
101 1 0 1 1
110 1 1 0 1
111 1 1 1 1

X

Y1

Y2

Z

Z

Truth Table

17

10/3/2016 Communications and Computer Engineering II

Boolean Logic Properties (4)
 Distributivity 2

– A + (B C) = (A + B) (A + C)

C
A
B
A

C
B
A

a+bc != (a+b)(a+c) ABC X Y1 Y2 Z
000 0 0 0 0
001 0 0 1 0
010 0 1 0 0
011 1 1 1 1
100 0 1 1 1
101 0 1 1 1
110 0 1 1 1
111 1 1 1 1

Truth Table

X

Y1

Y2

Z

Z

18

10/3/2016 Communications and Computer Engineering II

Boolean Logic Properties (5)
 Idempotency

– A A = A
– A + A = A

A X

A X

A X

a + a = 2a

a * a = a2

A B AND OR X=A
0 0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1 1

Truth Table

19

10/3/2016 Communications and Computer Engineering II

Boolean Logic Properties (6)
 Absorptivity

– A (A + B) = A + (A B) = A

A

B

A

B

A

A B AND OR X=A
0 0 0 0 0
0 1 0 1 0
1 0 0 1 1
1 1 1 1 1

Truth Table X

X

X

20

10/3/2016 Communications and Computer Engineering II

Boolean Logic Properties (7)

 NOT Operation
– A v A = 1
– A ^ A = 0

 Double Negative Elimination
– A = A

A A
A

A A =

A A A
0 1 0
1 0 1

Truth Table

21

10/3/2016 Communications and Computer Engineering II

Boolean Logic Properties (8)
 Constant Operation

– A 0 = 0
– A 1 = A
– A + 0 = A
– A + 1 = 1

1
A
0
A

A

1
1
A
0
A

0

A

A B AND OR
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

Truth Table

22

10/3/2016 Communications and Computer Engineering II

Boolean Logic Properties (10)
 De Morgan’s Law

– A B = A + B
– A + B = A B

B
A

B
A

B
A

B
A

A B A B X Y
0 0 1 1 1 1
0 1 1 0 1 0
1 0 0 1 1 0
1 1 0 0 0 0

X
Truth Table

X

Y Y

23

10/3/2016 Communications and Computer Engineering II

= (A B + A B + A B)C
= (A B + A B + A B + AB)C
= ((A B + A B) + (A B + AB))C
= (A (B + B) + (A + A)B)C
= (A + B)C
= AB C
=

Equivalent Transformation

A

B

C

C
B
A

=
 AB + C

A B C + A B C + A B C

24

10/3/2016 Communications and Computer Engineering II

 Canonical representation
– Unique representation

 Disjunctive (NOT-AND-OR) Normal Form

 Conjunctive (NOT-OR-AND) Normal Form

– Representation is unique when the variable order is
fixed

– The circuit size is exponential in terms of the number
of input variables in general

Canonical Representation

e.g. A B C + A B C + A B C

e.g. (A + B + C)(A v B v C)(A v B v C)

25

Example : Summation

 1-bit Adder (Half-Adder)
 A+B

– A + B = C (a + b = c s)
– 0 + 0 = 0 (0 + 0 = 00)
– 0 + 1 = 1 (0 + 1 = 01)
– 1 + 0 = 1 (1 + 0 = 01)
– 1 + 1 = 2 (1 + 1 = 10)

a b carry sum
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Truth Table

a

b
carry

sum

Half
Adder

a

b

sum

carry

10/6/2016 Communications and Computer Engineering II 26

Exclusive-OR

AND

n-bit Adder

 n-bit adder
– A : an … a2 a1 a0
– B : bn … b2 b1 b0

 Design by NOT-AND-OR form for each output
becomes too big

 Hierarchical Design
– Use 1-bit adders
– Input has carry from lower bit

 …
bn

b0
b1

...
an

a0
a1

sn
c

s1
…
s0

n-bit
Adder

10/6/2016 Communications and Computer Engineering II 27

Hierarchical Design of Adder

 n-bit Adder
– A : an … a2 a1 a0
– B : bn … b2 b1 b0

a1 a0
+ b1 b0
c1 s1 s0

c0
Half

Adder

a0

b0

s0

c0

bit-0

Full
Adder

c0
a1

c1 b1

s1

bit-1

bit-1 : (c1,s1) = a1 + b1 + c0
bit-0 : (c0,s0) = a0 + b0

10/6/2016 Communications and Computer Engineering II 28

Full Adder

 1-bit adder with carry
– Input includes a carry from lower bit

c(i-1) ai bi ci si
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Truth Table

10/6/2016 Communications and Computer Engineering II 29

Half
Adder

ai

bi

c(i-1) si

ci

a

b c

s

Half
Adder

a

b c

s

Full Adder

n-bit Adder (RCA)

 Ripple carry adder
– Serially connected n full-adder
– Carry signal may propagate along FAs
– Small size, but slow speed

…
bn

b0
b1

...
an

a0
a1

sn
c

s1
…
s0

n-bit
Adder

10/6/2016 Communications and Computer Engineering II 30

n-bit Adder (CLA)

 Carry Look-ahead Adder
– Logic that detects whether carry propagates or not is

inserted
– large size, but fast

10/6/2016 Communications and Computer Engineering II 31

n-bit Adder (CLA) (2)

CL1 = a0 ^ b0
CL2 = (a1 ^ b1) v (c0 ^ a1) v (c0 ^ b1)
 = (a1 ^ b1) v (a0 ^ b0 ^ a1) v (a0 ^ b0 ^ b1)

c(i-1) ai bi ci si
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Truth Table

10/6/2016 Communications and Computer Engineering II 32

Logic Minimization
 The size of a circuit is estimated by the number

of transistors in the circuit
 The length of formula (the number of literals)

corresponds to the number of transistors
 The minimization of the length of formula

– NP-hard

 Basic terminology

– Complement of variable x : x’, x, x
 x = 0  x’ = 1
 x = 1  x’ = 0

– Literal
 Boolean variable x or its complement x’

CL2 = (a1 ^ b1) v (c0 ^ a1) v (c0 ^ b1)
 = (a1 ^ b1) v (a0 ^ b0 ^ a1) v (a0 ^ b0 ^ b1)

33 10/6/2016 Communications and Computer Engineering II

Boolean Function Representation

 Boolean Function f : BN  B
– Input variables : x1, x2, …, xN (in B)
– Output variable : f (in B)

– Input vector x = (x1, x2, …, xN)

 A minterm
 A node of N-dimensional hypercube

– (00…0), (00…1), …, (11…1)
 ON-set : x such that f(x)=1
 OFF-set : x such that f(x)=0

34 10/6/2016 Communications and Computer Engineering II

(000) (100)

(010) (110)

(001)

(011) (111)
Hypercube

a

b
c (abc)

(101)

Boolean Space

 Boolean space BN

– represented by N-dimensional hypercube
 edge iff Hamming distance = 1

B1

(0) (1) B2

B3 B4

(00) (10)

(01) (11)

(000) (100)

(010) (110)

(001) (101)

(011) (111)

35 10/6/2016 Communications and Computer Engineering II

10/6/2016 Communications and Computer Engineering II

Karnaugh Map

 For Two-level Boolean Logic Minimization
– by manual for small functions

 Karnaugh map
– Each square corresponds to a minterm
– Hamming distance of adjacent squares is 1

 a / b 0 1
0 1 0
1 0 1

ab / c 0 1
00 0 0
01 1 0
11 1 1
10 0 1

ab / cd 00 01 11 10
00 0 0 1 1
01 1 1 1 1
11 0 1 1 0
10 0 0 1 1

f = ab v a’b’

f = ac v bc’ f = a’b v bd v b’c

36

10/6/2016 Communications and Computer Engineering II

Karnaugh Map (2)

ab / c 0 1
00 0 0
01 1 0
11 1 1
10 0 1

a b c f
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Truth table
Karnaugh Map

B3

(000) (100)

(010) (110)

(001)

(101)

(011) (111)
Hypercube

a

b
c (abc)

 Logic Minimization
– Find a maximal rectangle in Karnaugh Map

 Should correspond a hypercube that consists of ON-set

f = a’bc’ v ab’c v abc’ v abc = ac v bc’

37

Karnaugh Map (3)

 Help to find Factoring of Two-level logic function

10/6/2016 Communications and Computer Engineering II 38

ab’c’d 1001
ab’cd 1011
 ab’d 10-1

ab’d’ 10-0
ab’d 10-1
 ab’ 10--

ab / cd 00 01 11 10
00
01
11
10

ab / cd 00 01 11 10
00
01
11
10

a’bc’d v ab’cd = ab’d(c+c’)= ab’d a’bd v ab’d = ab’(d+d’)= ab’

10/6/2016 Communications and Computer Engineering II

Sequential Circuit Implementation

 Performance depends on
– State-machine itself
– Time to transit from one state to another

 Correct output must be recognized
 Correct state must be stored

Combinational
 circuit outputs inputs

Memory
element next-state current-state

39

10/6/2016 Communications and Computer Engineering II

Memory Function

0 0 1 1

40

 Dynamic Memory (Capacitance)
– Data lifetime is limited due to leakage

 Static Memory (Inverter loop)
– Two stable states

– Meta-stable state might occur by delay
 Continuous signal transitions

0 1

stable

meta-stable

0 1

10/6/2016 Communications and Computer Engineering II

Memory

 Data Storage
– Optimized to achieve high speed, small area, low

power, etc
 Dynamic Random Access Memory (DRAM)
 Static Random Access Memory (SRAM)
 Flash Memory

 Temporal memory for computation
– High speed oriented

 Latch, Flip-Flop, Register

41

10/6/2016 Communications and Computer Engineering II

Latch (Inverter Loop)

 Inverter loop with state control logic
 Behavior of Latch (transparent phase)

– The state (output) of inverter loop is controlled by
inputs

0
1

1 0

0

1

1
0

0
1

1

0

42

10/6/2016 Communications and Computer Engineering II

Latch (Inverter Loop) (2)

 Behavior of Latch (opaque phase)
– The state of inverter loop is kept when both input is 1

0

1

1

0
0

1

1

0

43

10/6/2016 Communications and Computer Engineering II

Latch (Inverter Loop) (3)

 Behavior of Latch
– Unexpected inputs (0,0)

0

0

1

1

44

Behavior of D-Latch

 Delay type Latch (D-Latch) with clock and load
– State changes during transparent phase

10/6/2016 Communications and Computer Engineering II 45

Timing Chart

clock

load

D
Q

0 1
0 1 0
1

0 1
0

1 0
1

0
1

0
1

opaque
transparent

1
1

0
0

10/6/2016 Communications and Computer Engineering II

Flip-Flop (D-FF)

 Delay type Flip-Flop
– Two inverter loop (master and slave)
– Next State Q = input D (control signal)
– State changes at clock-edge only

Q(i) D(i) 0 1
0 0 1
1 0 1

Q(i+1)

D Q

Q

clk

46

master latch slave latch

10/6/2016 Communications and Computer Engineering II

R

Behavior of D-FF

0

1 0

1

0 1

1
0 1

1

0
1 1

1
0 0

1
1 0

1
1 1

Q
Q 1

Q’
Q’ 0 1

1 0

0

1

1

0

0

1

Timing Chart
clock

D

Q

R

47

1

1

1

0

1
Q

0
Q

0 0

1
1

0
0

10/6/2016 Communications and Computer Engineering II

Example: Counter by Adder and D-FF
 Count the number of clock inputs

– State = #clock inputs (8 states = 3 bits)
– Next state = Current state + 1

Q2Q1Q0 C2 S2S1S0
000 0 001
001 0 010
010 0 011
011 0 100
100 0 101
101 0 110
110 0 111
111 1 000

current
 state

3bit Adder
output next state

48

input/output

Sequential Circuit Implementation
 Determine Finite State Machine
 Determine State Assignment
 Synthesis combinational circuit

– Generate appropriate control signals and outputs

10/6/2016 Communications and Computer Engineering II 49

0001 1000

0010 0100

0/0

0/1

0/1

0/1

1/0

1/1 1/1

1/0

Finite State Machine
 with state assignment Sequential Circuit

state

Digital Integrated Circuits Synthesis

 Exploration of Huge Design Space
 Increase of computation power enable us to use

computation power rich algorithms
– Iterative improvement
– Stochastic search
– Analytical method

 Design space design
– Abandon useless area
– Focus on promising area
– Efficiency

10/6/2016 Communications and Computer Engineering II 50

	Digital Integrated Circuits 2: Synthesis
	VLSI and Computer System
	VLSI Design / Manufacturing
	VLSI Design (Synthesis)
	Complexity Theory
	NP-completeness
	Nondeterministic Polynomial Time Algorithm
	Evidence (Proof) for YES
	Polynomial Time Reduction
	Proof of NP-completeness
	NP-hardness
	First Step of Algorithm Design
	Logic Synthesis
	Equivalent Implementation
	Boolean Logic Properties
	Boolean Logic Properties (2)
	Boolean Logic Properties (3)
	Boolean Logic Properties (4)
	Boolean Logic Properties (5)
	Boolean Logic Properties (6)
	Boolean Logic Properties (7)
	Boolean Logic Properties (8)
	Boolean Logic Properties (10)
	Equivalent Transformation
	Canonical Representation
	Example : Summation
	n-bit Adder
	Hierarchical Design of Adder
	Full Adder
	n-bit Adder (RCA)
	n-bit Adder (CLA)
	n-bit Adder (CLA) (2)
	Logic Minimization
	Boolean Function Representation
	Boolean Space
	Karnaugh Map
	Karnaugh Map (2)
	Karnaugh Map (3)
	Sequential Circuit Implementation
	Memory Function
	Memory
	Latch (Inverter Loop)
	Latch (Inverter Loop) (2)
	Latch (Inverter Loop) (3)
	Behavior of D-Latch
	Flip-Flop (D-FF)
	Behavior of D-FF
	Example: Counter by Adder and D-FF
	Sequential Circuit Implementation
	Digital Integrated Circuits Synthesis

