Digital Integrated Circuits 2: Synthesis

Atsushi Takahashi

Department of Information and Communications Engineering School of Engineering Tokyo Institute of Technology

10/6/2016

VLSI and Computer System

VLSI (Very Large Scale Integrated Circuits)
 Computer System

VLSI Design / Manufacturing

Integration of Various Technologies

- Device Manufacture
 - Make transistors small
 - Mask Design, Exposure, Polishing, Dicing
- Circuit Design, Layout Design
 - High Speed, Low Power, Reliability
- Packaging, Printed Circuit Board
 - Wire Bonding
- System Design
- Software Design
- Marketing

Light source

VLSI Design (Synthesis)

- Design Automation
 - Essential in design productivity improvement
- Problem Definition
 - Inputs, outputs, and objectives
 - Design flow and Hierarchical synthesis
 - many sub-problems
 - ✓ Optimum solution for sub-problem may not be good for whole problem
 - Need to update Design methodology and Design flow
- Problem : Find an optimum solution
 - Is there an exact algorithm for the problem?
 - Yes (in most cases for combinatorial problem)
 - Enumerating all the cases and pick a best one
 - Impractical for large instances
 - Is there a practical exact algorithm for the problem?
 - NO (except limited cases)
 - Need sophisticated intelligent approach
 - Heuristic in most cases

Complexity Theory

Background of Algorithm Design

- P and NP
- NP-complete
- NP-hard
- Polynomial Time Reduction
- Nondeterministic Polynomial Time Algorithm
- (Deterministic) Polynomial Time Algorithm

NP-completeness

- Decision Problem (Yes/No Problem)
 - NP : Set of Decision problems that have
 - Nondeterministic Polynomial time algorithm
 - P: Set of Decision problems that have
 - (Deterministic) Polynomial time algorithm
 - NP-C: hardest problems in NP
 - If a problem in NP-C can be solved in polynomial time, then any problem in NP can be solved in polynomial time
 - A decision problem is said to be NP-complete if it is in NP-C
 - SAT, 3-SAT, COL, HG, IS, TS, ...
- Fact: P⊆ NP
- Conjecture: P ≠ NP

[Garey and Johnson, "Computers and Intractability, A Guide to the Theory of NP-Completeness", Freeman and Co., 1979]

10/6/2016

Nondeterministic Polynomial Time Algorithm

Typical Structure

- Step 1 (nondeterministic)
 - Generate a evidence in polynomial time
 - (Pick up one arbitrary among exponential candidates)
- Step 2 (deterministic)
 - Check the evidence in polynomial time
 - If the evidence is correct, then output YES
 - If the evidence is incorrect, then output NO

Behavior of Correct Nondeterministic Algorithm

Problem: Is Graph a Hamiltonian?

Evidence : sequence of vertices

Evidence (Proof) for YES

Problem: Is Graph Hamiltonian?

- **NP**
- An evidence that shows the graph is Hamiltonian which can be checked in polynomial time exists
- Problem: Is NOT Graph Hamiltonian?
 - NP ???
 - An evidence that the graph is not Hamiltonian is not trivial
 - What is an evidence that shows the graph is not Hamiltonian?

Polynomial Time Reduction

- Provides difficulty relation between problems
 - Which is not difficult?
- Polynomial Time Recution of Problem ($\Pi_1 \propto \Pi_2$)
 - Instance of Π_1 can be converted to instance of Π_2 in polynomial time while maintaining Yes/No property
 - Problem Π_1 can be solved in polynomial time by utilizing (hypothetical) polynomial time algorithm for problem Π_2
 - If Π_2 is solved in polynomial time, then Π_1 can be solved in polynomial time
 - Π_2 is not easier than Π_1 (same or more difficult)

Proof of NP-completeness

- NP-complete problem Π^* : $\forall \Pi \in NP$, $\Pi \propto \Pi^*$
 - Not easier than any problem in NP

- Proof of NP-completeness of Decision Problem Π
 - Pick up NP-complete problem Π^*
 - Show $\Pi^* \propto \Pi$

I is not easier than Π^* , that means Π is **NP**-complete

- Incorrect Proof
 - Show $\Pi \propto \Pi^*$
 - It is trivial by definition
 - It does not mean that Π is **NP**-complete

NP-hardness

- Optimization problem
 - is neither in NP nor in NP-C
 - is not said to be NP-complete
 - Is said to be **NP**-hard if a related decision problem is **NP**-complete
- No polynomial time algorithm for **NP-hard** problem if **P**≠**NP**
- If a problem is NP-hard, then
 - Approximation algorithm or Heuristic algorithm are pursued

[Garey and Johnson, "Computers and Intractability, A Guide to the Theory of NP-Completeness", Freeman and Co., 1979]

10/6/2016

First Step of Algorithm Design

Check whether problem is easy or not?

- Difficult = NP-hard, NP-complete
 - Design heuristic
- Easy = P (or decision version is in P)
 - Design exact polynomial time algorithm
 - Reduce time and space complexity
- Most of practical problems are difficult
 - NP-hardness seems trivial
 - but proof of NP-hardness is not easy
 - So, proof is often skipped, recently
- In the following

– P = problem solvable in polynomial time

Logic Synthesis

- Get a small logic circuit that realizes a given Boolean function
 - NP-hard problem
- Smallest logic circuit is not necessarily optimum
 - Objectives are Size, Delay, Power and etc.
- Two-level logic circuit synthesis
 NOT-AND-OR (Sum-of-Products) form
- Multi-level logic circuit synthesis
- Sequential logic circuit synthesis

What is the best implementation?

- depends ... varies ...

ABC	Х	Y	Ζ
000	0	0	1
001	0	1	0
010	0	0	1
011	0	1	0
100	0	0	1
101	0	1	0
110	1	1	0
111	1	1	0

Boolean Logic Properties

Boolean Logic Properties (2)

Associativity - (A B) C = A (B C) = A B C - (A + B) + C = A + (B + C) = A + B + C

10/3/2016

Boolean Logic Properties (3)

10/3/2016

Boolean Logic Properties (4)

Boolean Logic Properties (5)

Boolean Logic Properties (6)

A (A + B) = A + (A B) = A

10/3/2016

Boolean Logic Properties (7)

- NOT Operation - $A \lor \overline{A} = 1$
 - $-A^{A}\overline{A}=0$

• Double Negative Elimination $-\overline{A} = A$

Truth Table

Boolean Logic Properties (8)

- Constant Operation
 - -A 0 = 0
 - -A 1 = A
 - -A + 0 = A
 - -A + 1 = 1

Boolean Logic Properties (10)

• De Morgan's Law $-\overline{A B} = \overline{A} + \overline{B}$ $-\overline{A + B} = \overline{A} \overline{B}$

Equivalent Transformation

- Representation is unique when the variable order is fixed
- The circuit size is exponential in terms of the number of input variables in general

Example : Summation

n-bit Adder

- n-bit adder
 - A : an ... a2 a1 a0
 - B : bn ... b2 b1 b0
- Design by NOT-AND-OR form for each output becomes too big
- Hierarchical Design
 - Use 1-bit adders
 - Input has carry from lower bit

Hierarchical Design of Adder

Full Adder

1-bit adder with carry

- Input includes a carry from lower bit

Truth Table

bi

 $\mathbf{0}$

Cİ

 $\mathbf{0}$

si

n-bit Adder (RCA)

- Ripple carry adder
 - Serially connected n full-adder
 - Carry signal may propagate along FAs
 - Small size, but slow speed

n-bit Adder (CLA)

Carry Look-ahead Adder

- Logic that detects whether carry propagates or not is inserted
- large size, but fast

n-bit Adder (CLA) (2)

 $CL1 = a0 ^ b0$ $CL2 = (a1 ^ b1) v (c0 ^ a1) v (c0 ^ b1)$ $= (a1 ^ b1) v (a0 ^ b0 ^ a1) v (a0 ^ b0 ^ b1)$

Logic Minimization

- The size of a circuit is estimated by the number of transistors in the circuit
- The length of formula (the number of literals) corresponds to the number of transistors
- The minimization of the length of formula
 - NP-hard

 $CL2 = (a1 ^ b1) v (c0 ^ a1) v (c0 ^ b1)$ = (a1 ^ b1) v (a0 ^ b0 ^ a1) v (a0 ^ b0 ^ b1)

- Basic terminology
 - Complement of variable $x : x', \overline{x}, \neg x$
 - $x = 0 \rightarrow x' = 1$
 - $\mathbf{x} = \mathbf{1} \rightarrow \mathbf{x}' = \mathbf{0}$
 - Literal
 - Boolean variable x or its complement x'

Boolean Function Representation

- Boolean Function $f: B^N \rightarrow B$
 - Input variables $: x_1, x_2, ..., x_N$ (in B)
 - Output variable : f (in B)
 - Input vector $\mathbf{x} = (x_1, x_2, ..., x_N)$
 - A minterm
 - A node of N-dimensional hypercube - (00...0), (00...1), ..., (11...1)
 - ON-set : x such that f(x)=1
 OFF-set : x such that f(x)=0

Boolean Space

Boolean space B^N

- represented by N-dimensional hypercube

edge iff Hamming distance = 1

Karnaugh Map

- For Two-level Boolean Logic Minimization
 - by manual for small functions
- Karnaugh map
 - Each square corresponds to a minterm
 - Hamming distance of adjacent squares is 1

f = ab v a'b'

ab / c	0	1
00	0	0
01	1	0
11	1	1
10	0	1

ab / cd	00	01	11	10
00	0	0	1	1
01	1	1	1	1
11	0	1	1	0
10	0	0	1	1

f = ac v bc'

f = a'b v bd v b'c

Karnaugh Map (2)

Logic Minimization

- Find a maximal rectangle in Karnaugh Map
 - Should correspond a hypercube that consists of ON-set

Karnaugh Map (3)

Help to find Factoring of Two-level logic function

a'bc'd v ab'cd = ab'd(c+c')=ab'd a'bd v ab'd = ab'(d+d')=ab'

Sequential Circuit Implementation

- Performance depends on
 - State-machine itself
 - Time to transit from one state to another
 - Correct output must be recognized
 - Correct state must be stored

Memory Function

Memory

Data Storage

- Optimized to achieve high speed, small area, low power, etc
 - Dynamic Random Access Memory (DRAM)
 - Static Random Access Memory (SRAM)
 - Flash Memory

- High speed oriented
 - Latch, Flip-Flop, Register

10/6/2016

Latch (Inverter Loop)

- Inverter loop with state control logic
- Behavior of Latch (transparent phase)
 - The state (output) of inverter loop is controlled by inputs

Latch (Inverter Loop) (2)

Behavior of Latch (opaque phase)

- The state of inverter loop is kept when both input is 1

Latch (Inverter Loop) (3)

Behavior of Latch

- Unexpected inputs (0,0)

Behavior of D-Latch

Delay type Latch (D-Latch) with clock and load

- State changes during transparent phase

Flip-Flop (D-FF)

Delay type Flip-Flop

- Two inverter loop (master and slave)
- Next State Q = input D (control signal)
- State changes at clock-edge only

Behavior of D-FF

Example: Counter by Adder and D-FF

- Count the number of clock inputs
 - State = #clock inputs (8 states = 3 bits)
 - Next state = Current state + 1

Sequential Circuit Implementation

- Determine Finite State Machine
- Determine State Assignment
- Synthesis combinational circuit
 - Generate appropriate control signals and outputs

Sequential Circuit

Digital Integrated Circuits Synthesis

- Exploration of Huge Design Space
- Increase of computation power enable us to use computation power rich algorithms
 - Iterative improvement
 - Stochastic search
 - Analytical method
- Design space design
 - Abandon useless area
 - Focus on promising area
 - Efficiency

