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VLSI and Computer System 

 VLSI (Very Large Scale Integrated Circuits)
 Computer System
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Analog Digital 

A/D 

D/A 

Sensor etc. 

Environment FPGA 

Computer System / Embedded System / VLSI … 
Architecture : Microprocessor / Deep Neural Network … 
Hardware     : Logic Functions, Hardware Description Language … 
Software      : Algorithm, Real Time Operating System … 
Design   : Synthesis, Compiler, Physical Design … 

Display etc. 
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VLSI 

 Very Large Scale Integrated Circuits
 Contained in a variety of products

– Computer
 CPU, Network

– Consumer  electronics
 Digital TV,  DVD, Mobile phone, iPad, …

– Automotive
 Navigation, Engine Control, …
 Autonomous Driving

– Others
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History of VLSI 

 1959
– Transistors, diffusive resistances, wires are fabricated on a

silicon substrate by using lithography and etching
technology

– Few elements are in one chip
– Robert Noyce (A founder of Intel)
– Jack Kilby (Nobel Prize in Physics, 2000)

 Moore’s Law: #elements in one chip
– Twice in 1.5 year (+58% per year)
– Now : More than 1G elements in one chip

 Makimoto’s Wave
– Alternate standardization and customization in 10 year

cycles
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channel drain (n+) 
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Transistor Switch 
 Basic Item to control the voltage of a node
 nMOS (npn type) Transistor

substrate (p) 

SIO2

Poly-silicon L 

W gate

gate 

source drain 

Symbol 

3D Image 

Top view Image 

gate source drain 

Metal: Poly-silicon 
Oxide: SiO2: Insulator 

Semiconductor: Silicon 

MOSFET: MOS field-effect transistor 
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 Relay Computer, Fujitsu
 Relay-elements from telephone exchange

equipment
 Toshio Ikeda

– FACOM100, 1954
– FACOM128A, 1956
– FACOM128B, 1958

 Commercial computer
– Still working model was manufactured in 1959

 IPSJ Information Processing Technology Heritage

Historical Computers in Japan 
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Historical Computers in Japan 

 Parametron Computer, NEC
– SENAC-1(NEAC1102), 1958
– First commercial computer by NEC

 Hitoshi Watanabe
– IEEE Kirchhoff Award 2010

» Filter design theory and computer-aided 
circuit design 

 IPSJ Information Processing Technology Heritage
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 Electronic Calculators, Sharp
– CS-10A, 1964

 Germanium-Transistor
– First all-transistor diode electronic

desktop calculator in the world
 25 kg
 535,000 Yen (= 1,500 US$)

– Initial monthly salary of graduate = 21,526 Yen
– Toyota Corolla 1100cc  = 432,000 Yen (1966)

50th Anniversary G“50 Limited” = 2,400,000 Yen (2016)
 IEEE milestone 1964-1973
 IPSJ Information Processing Technology Heritage

Historical Computers in Japan 
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VLSI Design / Manufacturing 

Integration of Various Technologies 
 Device Manufacture

– Make transistors small
– Mask Design, Exposure, Polishing, Dicing

 Circuit Design, Layout Design
– High Speed, Low Power, Reliability

 Packaging, Printed Circuit Board
– Wire Bonding

 System Design
 Software Design
 Marketing
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Moore's law (1965) 

 Gordon E. Moore (A founder of Intel) 
– #Tr/Chip doubling every 18 months (or two years) 

10 
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Typical 
Process 

36 nm
 

22 nm
 

12 nm
 

Visible light 
750-380 nm 13.5 nm 

ArF laser EUV (Extremely Ultra Violet) 
193 nm 
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Inevitable Paradigm Shifts 

 The number of transistors in one chip becomes 
100 times in every 10 years 

 The smaller the feature size of VLSI chip is 
–  the higher the performance of VLSI is 
–  the larger the difficulty in VLSI design is 

 
 Time-to-market constraint 
 Performance (area, speed, power...) constraint 
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Change of Names 

 IC: Integrated Circuit             (1960- ) 
 LSI: Large Scale IC               (1970- ) 
 VLSI: Very Large Scale IC    (1980- ) 
 ULSI: Ultra Large Scale IC    (1990- ) 

 
 System LSI 
 SoC (System on Chip) 
 SiP (System in Package),… 
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VLSI Manufacture vs. Design 

 #transistor in VLSI chip           +58%/year 
 VLSI design productivity         +21%/year 
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Makimoto's Wave (1987) 

 Tsugio Makimoto (former Sony CTO etc.) 
– Semiconductor industry’s cyclical alternation between 
                  standardization and customization 
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’67 ’77 ’87 ’97 ’07 ’17 ’27 
ASICs SoC/SiP Custom LSIs 

Standardization (general-purpose, standard qualities) 

Customization (customer- or application-specific qualities) 

FPGAs MPUs/Memory 
Standard 
discretes 

Highly flexible 
super integration ? 

(COMPUTER, the IEEE Computer Society 2013) 
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Digital Integrated Circuits  

 What is Digital? 
–  Digital                                 vs.   Analog 

 Discrete                          vs.    Continuous 
 Integer or Boolean (0,1) vs.    Real 
 Countable                       vs.    Uncountable 

 What is Digital Integrated Circuits? 
– Realize Boolean Function: {0,1}n  {0,1}m 

– Objective 
 Cost : Size, Speed, Power, etc. 
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Why Digital Integrated Circuits  

 Why Digital? 
– Digital Applications 

 Digital Signal Processing 
 Video Processing,… 

– Robustness for Instability and Uncertainty 
– High Performance and Low Cost 
– VLSI (Very Large Scale Integrated Circuit) 
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Digital System Implementation 

 Combinatorial Circuits 
– Outputs are determined by Inputs 
– Every Boolean Function is realized 
– Often impractical due to size and speed 

 Sequential Circuits 
– State Machine 
– Outputs are not determined only by current inputs 
– Outputs depend on input sequence as well 
– Most Digital System Implementation 
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Combinatorial Circuits 

Raw Video Stream 

3 
2 

1 

0 

Combinatorial 
Circuit 

Encoded Video Stream 

3 
2 

1 
0 

Input 
a 
b 
c 

Combinatorial 
Circuit 

a + b 
(a + b) * c 

Output 

 Inputs are given at a time 
 Outputs are generated at a time 

Video Encoding 
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Sequential Circuits 

Raw Video Stream 

0 1 2 Sequential  
Circuit 

Encoded Video Stream 

0 1 2 

 Inputs are given sequentially 
 Input history is stored in circuit 
 Outputs are generated sequentially by using 

inputs and stored data (history, state) 

Video Encoding 
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Sequential Circuit Implementation 

 Performance depends on 
– State-machine itself 
– Time to transit from one state to another  

 Correct output must be recognized 
 Correct state must be stored 

 
Combinational 

 circuit outputs inputs 

Memory 
element next-state current-state 
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Synchronous Circuits 

 Progresses in Design Automation, but still 
require human intelligence due to huge design 
space 

 Synchronous Circuit Implementation 
– Synchronization by Global Clock 
– Physical Solution 

 Asynchronous Circuit Implementation 
– Synchronization without Global Clock 
– Self-Synchronous 
– Logical Solution 
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a 

d 

b 

c 2 

4 

12 6 

2 

2 

2 

clock 

0 

0 

0 

0 

D register 

Minimum clock-period : 12 

functional element 
with delay 2 

Typical Synchronous Circuits 

 Every register (memory)  is ticked by clock 
– Periodically        (same period) 
– Simultaneously   (same timing)  

 Complete-synchronous circuit 
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Typical Asynchronous Circuits 

– Synchronization by Handshake Protocol 
 Request and acknowledge 
 2-wire 2-phase implementation 

 
 

environment 
 

register register 

request acknowledge 

data transfer 

request acknowledge 

reset    
Wire 
value 

Status 

00 Not ready 
01 0 
10 1 
11 Not valid 

2-wires for 1-signal 
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Synchronous vs. Asynchronous 

 Synchronous Circuit 
– overhead of clock circuitry 
– simultaneous clock distribution becomes harder 
– needs innovation on clock distribution 

 Asynchronous Circuit 
– overhead of  circuitry that guarantees stability 
– relatively slow to maintain delay insensitivity 
– needs practical delay assumption 

 Mixture of Synchronous and Asynchronous 
Technique 
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Digital Integrated Circuit Synthesis 

 How to generate a Synchronous Circuit? 
– Combinatorial circuit 
– Sequential circuit 
that realizes a given Boolean Function 

 Optimization Targets 
– Circuit Size 
– Speed 
– Power 
– etc. 
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Typical VLSI Design Flow 

Behavioral specification  (C, VHDL, data flow graph, etc.) 

RTL description              (registers, modules, MUX, etc.) 

Gate level circuit             (NAND, NOR, etc.) 

Layout 

high-level synthesis 

logic synthesis 

physical (layout) synthesis 
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 Design Method 
– Manual Design 

 Circuit Diagram, Mask 
– Computer Aided Design 

 Boring simple tasks 
– Design Automation 

 Inferior  quality but used  
   since a circuit is too big 
   to design manually 

 Design Objectives 
– Area (Request from manufacturing, Yield, Cost) 
– Speed (Request from market,  Emergence of PC) 
– Power (Emergence of Mobile products) 
– Noise (Influence to TV, Medical products) 

Change of Design Method 
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Change of Design Style 

History of Standardization and Abstraction 
 Overcome performance degradation by scale profit  
 Full Custom Design 
 Semi Custom Design 
 Standard Cell 

– Same cell height 

 Gate Array 
– Same transistor layout 

 FPGA (Field Programmable Gate Array) 
– Same logic elements 

 Reconfigurable 
 IP base 
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Design Objective : Chip Area Reduction 

16 25 

Chip Area: Large Small 

#chip 
dust 

chip 

More chips and more earnings 

6 #actual chip 14 
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Packing Problem 

• Not so difficult if the number of modules is small 
• An optimal solution can not be found in practical time in 

general if the number of modules is large 
• In VLSI design, routing should be taken into account 

 

bad good 
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Design Objective : Delay Minimization 

 Delay characteristics changes 
– Feature size becomes small, then 

 transistor switching speed increases 
 wire resistance increases 
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Delay Model Evolution 

 Previous: routing delay = length 
 Current:   routing delay = length + distance 
 Future:     more accurate model is necessary 
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Growth of Layout Importance 

 Signal Delay Estimation 
– Previous: gate level consideration is enough 

 signal delay is proportional to #gate 
     routing hardly affect signal delay 
– Future: layout consideration is essential 

 signal delay depends on its path 
     existence of gate hardly affect signal delay 

same delay? 
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max typ min 

max 

typ 

min 

Increase in Delay Uncertainty 
 Delay variation increases 

– System should work correctly 
                 under the predefined range of conditions  
– Robustness against delay uncertainty becomes important 
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Routing 

 Connect pins under the design rule 
– Many nets (many connection requests) 
– 100% completion ratio 

 100%  without manual correction 
 Near 100% + manual correction 

– Various design rules 
 # of layers 
 Obstacles 

– Various properties of instances 
 Pin distribution 

– Various objectives 
 Total length, delay, power, shape 
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Hierarchical  Design 

 Global routing 
– Design rule insensitive   
– Routing area is divided into subareas 
– Balance the congestion of subareas 

 Greedy approach 
– Shortest Path (Two terminal) 
– Steiner Tree (Three or more terminal) 

 Rip-up and Reroute 
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Hierarchical  Design 

 Detailed routing 
– Design rule sensitive 
– Multiple Nets 

 Channel routing (Two or Three layer) 
 Switch box routing (Two or Three layer) 
 Area routing  (Three or more layer) 

– Single Nets 
 Wire sizing 
 Buffer Insertion 
 Signal integrity 
 Via planning 
 Clock routing 
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Objectives 

 Objectives are changing depending on 
technological environments 
– 100% routing 
– Area (total length) minimization 
– Delay minimization 
– Skew minimization 
– Power minimization 
– Noise minimization 

 
– Delay control 

Power 

Time 
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Design Objectives in Channel Routing 

 2-Layer Channel Routing 
– Connect pins on the boundary of routing area using 2-layer 
– Minimize the number of tracks (height, width) of channel 

a b b c d 

d a c e e pin 

height 

via 

HV rule 

a b b c d 

d a c e e 
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 Via Minimization 
– Minimize #via by assigning wires into proper layer 

via 

a b b c d 

d a c e e 
HV rule 

#via = 10 
a b b c d 

d a c e e 
arbitrary rule 

#via = 1 

Via Problem 
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 Double Via Insertion 
– Minimize #single-via to improve the reliability 

via 

a b b c d 

d a c e e 

#single-via = 10 
a b b c d 

d a c e e 

#single-via = 2 

Via Problem (2) 
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Boolean Function 

 Boolean Function f : Bn  Bm  
– Input variables    : x1, x2, …, xn    ( in B) 
– Output variables : f1,f2, …, fm    (in B) 

 
 Boolean Set B 

–  { 0, 1 } 
–  { False, True } 
–  { GND, VDD } 
– is represented by the voltage of a node in a circuit 

  1 : high voltage (say 5[v]) 
  0 : low voltage (say 0[v] 

 Boolean variable : takes values in B  
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Example: Summation 

 Number Notation 
– Integer (Unsigned) – Signed Integer 

 2’s-complement 
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dec. binary hex 
0  0 0 
1 1 1 
2 10 2 
3 11 3 
4 100 4 
5 101 5 
6 110 6 
7 111 7 
8 1000 8 

dec. bin. Hex 
9  1001 9 

10 1010 A 
11 1011 B 
12 1100 C 
13 1101 D 
14 1110 E 
15 1111 F 
16 10000 10 
17 10001 11 

dec. binary 
0 0000 
1 0001 
2 0010 
3 0011 
4 0100 
5 0101 
6 0110 
7 0111 

dec. binary 
-8 1000 
-7 1001 
-6 1010 
-5 1011 
-4 1100 
-3 1101 
-2 1110 
-1 1111 

Enable efficient circuit synthesis 
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Example: Summation 

 X+Y 
+ : B2 x B2  B3  
+ :    B4      B3  

 Input 
– two 2-bit binaries 

 X: ( x1, x0 ) 
 Y: ( y1, y0 ) 

 Output 
– one 3-bit binary 

 X+Y : (f2 ,f1, f0 ) 

X Y X+Y 
0  0 0 
0 1 1 
0 10 10 
0 11 11 
1 0 1 
1 1 10 
1 10 11 
1 11 100 

X Y X+Y 
10  0 10 
10 1 11 
10 10 100 
10 11 101 
11 0 11 
11 1 100 
11 10 101 
11 11 110 
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Basic Logic Gates 

 NOT gate (Inverter) 
– Output = ¬Input 

 AND gate 
– Output = Input1^ Input2 

– Looks like production (times)  
  often write as Y=AB 

 OR gate 
– Output = Input1 v Input2 
– Looks like summation (plus) 

   often write as Y=A+B 

a a a’ 

a ^ b ab 

a v b a + b 

a v b a 
b 

a 
b a ^ b 

a a 

45 



10/3/2016 Communications and Computer Engineering II 

Logic Synthesis 

 Get a small logic circuit that realizes a given 
Boolean function 
– NP-hard problem 
– Exact methods 

 Exponential time algorithm 
– Heuristics 

 Good quality 
 

 Smallest logic circuit is not necessarily optimum 
–  Objectives are Size, Delay, Power and etc. 
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CMOS Implementation 

 Complementary Metal-Oxide-Silicon 
 Pull-up and pull-down transistor networks 

– Larger area 
– Low power 

 
 Single-stage CMOS 

– Complex function can be realized 
 May cause area and/or speed overhead 
 AND / OR functions can not be realized 
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Pull-up 
network 

Pull-down 
network 

Input Output 

VSS 

VDD 
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CMOS Property (1) 
 When all inputs are 0 

– Pull-up is ON 
– Pull-down is OFF 
– Output is 1 

 When all inputs are 1 
– Pull-up is OFF 
– Pull-down is ON 
– Output is 0 

 
  Cannot realize AND, OR functions 

 
 
 

p 

n 

p 

n 

ON 

OFF 

ON 

OFF 

1 

0 

0 

1 

0 

1 
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CMOS Property (2) 
 Pull-up and pull-down transistor networks 

operate complementary 
– When Pull-up is ON, Pull-down is OFF 
– When Pull-up is OFF, Pull-down is ON 

p 

n 

p 

n 

ON 

OFF ON 

OFF 

1 0 

Low Power since no direct current from VDD to VSS 
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 nMOS (npn) 
–  ON when gate is high 
–  OFF when gate is low 

 
 

 
 pMOS (pnp) 

–  ON when gate is low 
–  OFF when gate is high 

nMOS and pMOS Transistors 

ON 

ON 

OFF 

OFF 

g 

s 

d 

g 

s 

d 

vgs<Vth 

g 

d 

s 
g 

d 

s -vgs < -vth 
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CMOS NOT Gate Behavior 

Input = 0 Input = 1 

Vgs < vth 

-vgs < -vth 

1 

0 

1 1 0 0 
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CMOS NOT Gate Layout 

Circuit Diagram 
In Out 

VDD 

VSS 

pMOS 

nMOS 

Layout Image (top view) 
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CMOS AND Gate (Y=X1^X2) 

Circuit Diagram Symbol 

Truth Table 

X1 X2 Y 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

X1 

X1 

X2 

X2 
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AND Gate Behavior 

X1 = X2 = 0 X1 = 1, X2 = 0 

0 

0 

1 1 

0 

1 
X1 

X2 

X1 

X2 

Y1 Y1 

1 1 
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AND Gate Behavior (2) 

X1 = X2 = 1 

1 

1 

0 X1 X2 Y1 

0 0 1 
0 1 1 
1 0 1 
1 1 0 

Y 
0 
0 
0 
1 

Truth Table 

Y1 

Y = Y1 

X1 

X2 

X1 

X2 

Y1 

0 
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CMOS OR Gate (Y=X1vX2) 

Circuit Diagram Symbol 

Truth Table 

X1 X2 Y 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

X1 

X2 

X1 

X2 
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X1 

X2 

X1 

X2 
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OR Gate Behavior 

X1 = X2 = 0 X1 = 0, X2 = 1 

0 

0 

0 

1 
1 0 

1 0 

0 0 

0 

0 

1 

0 
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OR Gate Behavior (2) 

X1 = X2 =1 
Truth Table 

X1 X2 Y1 Y 
0 0 1 0 
0 1 0 1 
1 0 0 1 
1 1 0 1 

1 

1 
1 

0 

Y = Y1 

X1 

X2 
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 Lower supply voltage 
– Increase of leak current 
– Dynamic power vs. Static power 

 New Devices 
– FinFET 

 gate wraps around the channel or “fin” 
– 3D Integration 
Different properties 

CMOS Challenges 
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VLSI and Computer System  

 Integration of Various Technologies 
 Roadmap 

– Need technologies on an appropriate timing 
 One missing technology ruins whole 
 Technology too early to use might be wasteful 
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Analog Digital 

A/D 

D/A 

Sensor etc. 

Environment FPGA 

Computer System / Embedded System / VLSI … 

Display etc. 
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