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5 The Weierstrass representation

Complex Analysis again. A holomorphic function f on a
domain D ⊂ C is said to be having an isolated singularity at p
if there exists a neighborhood Up of p such that Up ⊂ D.

Fact 5.1 (The Laurent expansion). For a holomorphic func-
tion f having an isolated singularity at p, there exists a positive
number ε and complex numbers an (n ∈ Z) such that

(5.1) f(z) =
+∞∑

n=−∞
an(z − p)n (Dp,ε := {z ; 0 < |z − p| < ε}).

The convergence of the right-hand side is uniform on any com-
pact subset of Dp,ε

Definition 5.2. The coefficient a−1 in (5.1) is called the residue
of f at an isolated singularity p, and denoted by

Res
z=p

f(z) := a−1.

Definition 5.3. An isolated singularity p of holomorphic func-
tion f is a pole of (at most) order k if a−m = 0 holds in (5.1)
for m > k. If {m ; am ̸= 0} is unbounded, p is said to be an
essential singularity.

Proposition 5.4. If p is a pole of order at most k of a holo-
morphic function f , the residue is computed as

Res
z=p

f(z) =
1

(k − 1)!
lim
z→p

dk−1

dzk−1

{
(z − p)kf(z)

}
.
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Holomorphic differential forms on Riemann surfaces.
Let M2 be a Riemann surface, i.e., a 1-dimensional complex
manifold and let {(Uα, zα)} be a complex atlas of it. A notion
of holomorphic function on M2 is defined in a usual way: a
function f : M2 → C is holomorphic if f |Uα is holomorphic in
zα for each α. A meromorphic function on M2 is a holomorphic
function on M2 \ Σ, where Σ is a discrete subset of M2, such
that each point p ∈ Σ is at most a pole of f |Uα for a chart Uα

containing p. The order of a pole at p ∈ Σ is defined as the order
of f |Uα at p, which does not depend on a choice of coordinates.

A form “f(z) dz” on a local complex chart (U, z) is called
a holomorhpic 1-form if f(z) is a holomorphic function in z.
A holomorphic 1-form on M2 is a collection of holomorhpic 1-
forms {fα dzα} satisfying the compatibility

fα(zα) = fβ(zβ(zα))
dzα

dzβ
.

The collection {fα dzα} is a meromorphic 1-form if each fα is
meromorphic.

Definition 5.5. Let ω = {fα dzα} be a meromorphic 1-form on
M2 and p a pole of ω. The residue of ω at p is defined as

Res
p

ω := Res
zα=p

fα(zα),

were (Uα, zα) is a complex chart around p.

Remark 5.6. The definition of the residue does not depend on a
choice of coordinate charts.
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Let C be a curve in a coordinate neighborhood (U, z) of M2,
and z = z(t) (a ≦ t ≦ b) is a parametrization of it. Then the
integration of a holomorphic 1-form f(z) dz on U is defined as

(5.2)

∫

C

f(z) dz =

∫ b

a

f
(
z(t)

) dz(t)

dt
dt.

Noticing that this definition does not depend on coordinate
charts and parametrizations of C, one can define the line in-
tegral of a holomorphic 1-form ω on M2 along a curve C. The
following is a corollary of Cauchy’s theorem of complex integra-
tions:

Fact 5.7 (The residue principle). Let C is a closed curve of M2

which bound a simply connected domain D ⊂ M2, and ω be a
meromorhpic 1-form on a neighborhood of D∪C which have the
only pole p ∈ D. Then

∫

C

ω = 2πi Res
p

ω.

The Weierstrass representation formula. Let M2 be an
orientable manifold and f : M2 → R3 be an immersion. By
Corollary 3.11, there exists a structure of Riemann surface on
M2 such that any complex coordinate is isothermal. So, without
loss of generality, we may assume that M2 is a Riemann surface
and f is a conformal immersion. Moreover, if f is minimal,

(5.3) ϕ :=
∂f

∂z
: U −→ C3
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is a holomorphic map satisfying (4.2) and (4.3), cf., Proposi-
tion 4.4, where (U, z) is a complex coordinate chart.

Though ϕ depends on a choice of coordinate charts,

(5.4) ϕ̂ := ϕ(z) dz

does not depend on coordinates. In fact, if one take another
complex coordinate chart (V, w),

∂f

∂w
dw =

∂f

∂z

dz

dw
dw =

∂f

∂z
dz.

Proposition 5.8 (The Weierstrass representation). For a con-
formal minimal immersion f : M2 → R3 of a Riemann surface
M2, there exists a meromorphic function g and a holomorphic
1-form ω on M2 such that, up to translations in R3,

(5.5) f(z) = Re

∫

Cz

(
(1 − g2), i(1 + g2), 2g

)
ω

holds, where Cz is a path on M2 joining a base point z0 and z.

Proof. Define ϕ = (ϕ1, ϕ2, ϕ3) as in (5.3). If ϕ1 − iϕ2 is equiva-
lently zero, ϕ3 = 0 because of (4.2). In this case, the surface is
a horizontal plane, and g = 0, ω = a dz satisfy the conclusion.
Otherwise, let g := ϕ3

ϕ1−iϕ2
and ω = ϕ1 − iϕ2.

Since g does not depend on a choice of complex charts, g is
a meromorphic function on M2. On the other hand, by (5.4)
does not depend on coordinates, ω can be considered as a holo-
morphic 1-form on M2. By (4.2), we have

0 = ϕ̂2
1 + ϕ̂2

2 + ϕ̂2
3 = (ϕ̂1 − iϕ̂2)(ϕ̂1 + iϕ̂2) + ϕ2

3

= (ϕ̂1 − iϕ̂2)ω + g2ω2,
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which implies ϕ̂1 − iϕ̂2 = −g2ω, where ϕ̂ = ϕ dz. Hence we have
ϕ̂ = 1

2

(
(1 − g2), i(1 + g2), 2g

)
ω. Equation 5.5 holds because

(5.6) F (z) :=

∫

Cz

ϕ̂, then
∂

∂z

(
F (z) + F (z)

)
= ϕ̂.

Corollary 5.9. Let f be as in (5.5), the first fundamental form
ds2, the unit normal vector field ν, and the second fundamental
form II are expressed as

ds2 = (1 + |g|2)2|ω|2,(5.7)

ν =
1

1 + |g|2
(
2Re g, 2 Im g, |g|2 − 1

)
= π−1(g),(5.8)

II = −ω dg − ω dg,(5.9)

where π : S2 → C ∪ {∞} is the stereographic projection.

Proof. Let z = u + iv be a complex coordinate. Then by the
proof of (4.3), ds2 = E(du2 + dv2) = E dz dz̄, where E =
2(|ϕ1|2 + |ϕ2|2 + |ϕ3|2) proving the first assertion. The second
assertion was the homework 4-1. The third assertion follows
since the second fandamental form is expressed as

II = (fzz · ν) dz2 + 2(fzz̄ · ν) dz dz̄ + (fz̄z̄ · ν) dz̄2.

As seen in Corollary 5.9, the meromorphic function g : M2 →
C∪{∞} can be identified with ν via the streographic projection.
So we call g the Gauss map of f .

The following is the converse assertion of Proposition 5.8.
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Theorem 5.10 (The Weierstrass representation). Let M2 be a
simply connected Riemann surface, and let g and ω be a pair
of a meromorphic function and a holomorphic 1-form on M2

such that ds2 in (5.7) is positive definite4. Then (5.5) gives a
minimal immersion.

Proof. The integration (5.6) does not depend on a choice of
paths Cz, and then it gives a map F : M2 → C3.

Examples.

Example 5.11. Let M2 = C, (g, ω) = (z, dz). Then

f : = Re

∫ (
1 − z2, i(1 + z2), 2z

)
dz

=

(
u − u3

3
+ uv2, −v − u2v +

v3

3
, u2 − v2

)

is a minimal surface, where z = u + iv (Figure 3,left). This
surface is known as Enneper’s surface.

Example 5.12. Let M2 = C \ {0} (not simply connected) and
set (g, ω) = (z, i dz/z2). Then f in (5.5) is represented by

f =

((
r − 1

r

)
sin θ,

(
r − 1

r

)
cos θ, −2θ

)
(z = reiθ)

which is not well-defined on M2 but on the universal cover of
M2. The surface is congruent to the helicoid (Example 5.12).

4This condition is equivalent that the set of the zeros of ω is the set of
poles of g, and for each pole p of g, the order of the pole p of g is exactly
half of the order of zero of ω.
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Example 5.11 Example 5.16 (n = 3)

Figure 3: Examples of minimal surfaces.

Example 5.13. Let M2 = C \ {0} and set (g, ω) = (z, dz/z2).
Then f in (5.5) is represented by, with z = reiθ,

f =

(
−
(

r +
1

r

)
cos θ, −

(
r +

1

r

)
sin θ, 2 log r

)
: M2 → R3,

which is the catenoid (Example 5.13).

The phenomenon as in Example 5.13 is generalized as

Proposition 5.14. Let M2 be a (not necessarily simply con-
nected) Riemann surface, and let (g, ω) be a pair of a meromor-
phic function and a holomorphic 1-form on M2 such that ds2

in (5.7) is positive definite. Assume

Re

∫

γ

(
1 − g2, i(1 + g2), 2g

)
ω = 0
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holds for all loops γ on M2. Then f in (5.5) is well-defined on
M2 and gives a minimal immersion of M2 into R3.

Corollary 5.15. Let M2 = C ∪ {∞} \ {p1, . . . , pn}, and (g, ω)
as in Proposition 5.14, and assume

ImRes
pj

(
1 − g2, i(1 + g2), 2g

)
ω = 0 (j = 1, . . . , n).

Then f as in (5.5) is a minimal immersion defined on M2.

Example 5.16. Let n ≧ 2 be an integer, and

M2 = C ∪ {∞} \ {1, ζ, . . . , ζn−1}, ζ = e2πi/n.

Then (g, omega) =
(
zn−1, dz

(zn−1)2

)
satisfies the assumptions

of Corollary 5.15, and hence there exists a minimal immersion
f : M2 → R3 with (g, ω). Such a series of minimal surfaces are
called the Jorge-Meeks’ surfaces.
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Exercises

5-1H Verify Example 5.16 for n = 3.


