5 The Weierstrass representation

Complex Analysis again. A holomorphic function f on a domain $D \subset \mathbb{C}$ is said to be having an isolated singularity at p if there exists a neighborhood U_{p} of p such that $U_{p} \subset D$.
Fact 5.1 (The Laurent expansion). For a holomorphic function f having an isolated singularity at p, there exists a positive number ε and complex numbers $a_{n}(n \in \mathbb{Z})$ such that
(5.1) $f(z)=\sum_{n=-\infty}^{+\infty} a_{n}(z-p)^{n} \quad\left(D_{p, \varepsilon}:=\{z ; 0<|z-p|<\varepsilon\}\right)$.

The convergence of the right-hand side is uniform on any compact subset of $D_{p, \varepsilon}$
Definition 5.2. The coefficient a_{-1} in (5.1) is called the residue of f at an isolated singularity p, and denoted by

$$
\operatorname{Res}_{z=p} f(z):=a_{-1} .
$$

Definition 5.3. An isolated singularity p of holomorphic function f is a pole of (at most) order k if $a_{-m}=0$ holds in (5.1) for $m>k$. If $\left\{m ; a_{m} \neq 0\right\}$ is unbounded, p is said to be an essential singularity.
Proposition 5.4. If p is a pole of order at most k of a holomorphic function f, the residue is computed as
$\operatorname{Res}_{z=p}^{\operatorname{Res}} f(z)=\frac{1}{(k-1)!} \lim _{z \rightarrow p} \frac{d^{k-1}}{d z^{k-1}}\left\{(z-p)^{k} f(z)\right\}$.

Holomorphic differential forms on Riemann surfaces. Let M^{2} be a Riemann surface, i.e., a 1-dimensional complex manifold and let $\left\{\left(U_{\alpha}, z_{\alpha}\right)\right\}$ be a complex atlas of it. A notion of holomorphic function on M^{2} is defined in a usual way: a function $f: M^{2} \rightarrow \mathbb{C}$ is holomorphic if $\left.f\right|_{U_{\alpha}}$ is holomorphic in z_{α} for each α. A meromorphic function on M^{2} is a holomorphic function on $M^{2} \backslash \Sigma$, where Σ is a discrete subset of M^{2}, such that each point $p \in \Sigma$ is at most a pole of $\left.f\right|_{U_{\alpha}}$ for a chart U_{α} containing p. The order of a pole at $p \in \Sigma$ is defined as the order of $\left.f\right|_{U_{\alpha}}$ at p, which does not depend on a choice of coordinates.

A form " $f(z) d z$ " on a local complex chart (U, z) is called a holomorhpic 1 -form if $f(z)$ is a holomorphic function in z. A holomorphic 1-form on M^{2} is a collection of holomorhpic 1forms $\left\{f_{\alpha} d z_{\alpha}\right\}$ satisfying the compatibility

$$
f_{\alpha}\left(z_{\alpha}\right)=f_{\beta}\left(z_{\beta}\left(z_{\alpha}\right)\right) \frac{d z_{\alpha}}{d z_{\beta}}
$$

The collection $\left\{f_{\alpha} d z_{\alpha}\right\}$ is a meromorphic 1-form if each f_{α} is meromorphic.

Definition 5.5. Let $\omega=\left\{f_{\alpha} d z_{\alpha}\right\}$ be a meromorphic 1-form on M^{2} and p a pole of ω. The residue of ω at p is defined as

$$
\underset{p}{\operatorname{Res} \omega} \omega:=\operatorname{Res}_{z_{\alpha}=p} f_{\alpha}\left(z_{\alpha}\right),
$$

were $\left(U_{\alpha}, z_{\alpha}\right)$ is a complex chart around p.
Remark 5.6. The definition of the residue does not depend on a choice of coordinate charts.

Let C be a curve in a coordinate neighborhood (U, z) of M^{2}, and $z=z(t)(a \leqq t \leqq b)$ is a parametrization of it. Then the integration of a holomorphic 1-form $f(z) d z$ on U is defined as

$$
\begin{equation*}
\int_{C} f(z) d z=\int_{a}^{b} f(z(t)) \frac{d z(t)}{d t} d t \tag{5.2}
\end{equation*}
$$

Noticing that this definition does not depend on coordinate charts and parametrizations of C, one can define the line integral of a holomorphic 1-form ω on M^{2} along a curve C. The following is a corollary of Cauchy's theorem of complex integrations:

Fact 5.7 (The residue principle). Let C is a closed curve of M^{2} which bound a simply connected domain $D \subset M^{2}$, and ω be a meromorhpic 1-form on a neighborhood of $D \cup C$ which have the only pole $p \in D$. Then

$$
\int_{C} \omega=2 \pi i \operatorname{Res}_{p} \omega .
$$

The Weierstrass representation formula. Let M^{2} be an orientable manifold and $f: M^{2} \rightarrow \mathbb{R}^{3}$ be an immersion. By Corollary 3.11 , there exists a structure of Riemann surface on M^{2} such that any complex coordinate is isothermal. So, without loss of generality, we may assume that M^{2} is a Riemann surface and f is a conformal immersion. Moreover, if f is minimal,

$$
\begin{equation*}
\phi:=\frac{\partial f}{\partial z}: U \longrightarrow \mathbb{C}^{3} \tag{5.3}
\end{equation*}
$$

is a holomorphic map satisfying (4.2) and (4.3), cf., Proposition 4.4, where (U, z) is a complex coordinate chart.

Though ϕ depends on a choice of coordinate charts,

$$
\text { (5.4) } \quad \hat{\phi}:=\phi(z) d z
$$

does not depend on coordinates. In fact, if one take another complex coordinate chart (V, w),

$$
\frac{\partial f}{\partial w} d w=\frac{\partial f}{\partial z} \frac{d z}{d w} d w=\frac{\partial f}{\partial z} d z
$$

Proposition 5.8 (The Weierstrass representation). For a conformal minimal immersion $f: M^{2} \rightarrow \mathbb{R}^{3}$ of a Riemann surface M^{2}, there exists a meromorphic function g and a holomorphic 1-form ω on M^{2} such that, up to translations in \mathbb{R}^{3},

$$
\begin{equation*}
f(z)=\operatorname{Re} \int_{C_{z}}\left(\left(1-g^{2}\right), i\left(1+g^{2}\right), 2 g\right) \omega \tag{5.5}
\end{equation*}
$$

holds, where C_{z} is a path on M^{2} joining a base point z_{0} and z. Proof. Define $\phi=\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$ as in (5.3). If $\phi_{1}-i \phi_{2}$ is equivalently zero, $\phi_{3}=0$ because of (4.2). In this case, the surface is a horizontal plane, and $g=0, \omega=a d z$ satisfy the conclusion. Otherwise, let $g:=\frac{\phi_{3}}{\phi_{1}-i \phi_{2}}$ and $\omega=\phi_{1}-i \phi_{2}$.

Since g does not depend on a choice of complex charts, g is a meromorphic function on M^{2}. On the other hand, by (5.4) does not depend on coordinates, ω can be considered as a holomorphic 1-form on M^{2}. By (4.2), we have

$$
\begin{aligned}
0 & =\hat{\phi}_{1}^{2}+\hat{\phi}_{2}^{2}+\hat{\phi}_{3}^{2}=\left(\hat{\phi}_{1}-i \hat{\phi}_{2}\right)\left(\hat{\phi}_{1}+i \hat{\phi}_{2}\right)+\phi_{3}^{2} \\
& =\left(\hat{\phi}_{1}-i \hat{\phi}_{2}\right) \omega+g^{2} \omega^{2}
\end{aligned}
$$

which implies $\hat{\phi}_{1}-i \hat{\phi}_{2}=-g^{2} \omega$, where $\hat{\phi}=\phi d z$. Hence we have $\hat{\phi}=\frac{1}{2}\left(\left(1-g^{2}\right), i\left(1+g^{2}\right), 2 g\right) \omega$. Equation 5.5 holds because
(5.6) $F(z):=\int_{C_{z}} \hat{\phi}, \quad$ then $\frac{\partial}{\partial z}(F(z)+\bar{F}(z))=\hat{\phi}$.

Corollary 5.9. Let f be as in (5.5), the first fundamental form $d s^{2}$, the unit normal vector field ν, and the second fundamental form II are expressed as

$$
\begin{align*}
(5.7) & d s^{2} \tag{5.7}\\
(5.8) & \nu \\
(5.9) & \left.I I+|g|^{2}\right)^{2}|\omega|^{2}, \\
& =-\omega d g-\overline{\omega d g} \\
1+|g|^{2} & \left(2 \operatorname{Re} g, 2 \operatorname{Im} g,|g|^{2}-1\right)=\pi^{-1}(g),
\end{align*}
$$

where $\pi: S^{2} \rightarrow \mathbb{C} \cup\{\infty\}$ is the stereographic projection.
Proof. Let $z=u+i v$ be a complex coordinate. Then by the proof of $(4.3), d s^{2}=E\left(d u^{2}+d v^{2}\right)=E d z d \bar{z}$, where $E=$ $2\left(\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}+\left|\phi_{3}\right|^{2}\right)$ proving the first assertion. The second assertion was the homework 4-1. The third assertion follows since the second fandamental form is expressed as

$$
I I=\left(f_{z z} \cdot \nu\right) d z^{2}+2\left(f_{z \bar{z}} \cdot \nu\right) d z d \bar{z}+\left(f_{\bar{z} \bar{z}} \cdot \nu\right) d \bar{z}^{2}
$$

As seen in Corollary 5.9, the meromorphic function $g: M^{2} \rightarrow$ $\mathbb{C} \cup\{\infty\}$ can be identified with ν via the streographic projection. So we call g the Gauss map of f.

The following is the converse assertion of Proposition 5.8.

Theorem 5.10 (The Weierstrass representation). Let M^{2} be a simply connected Riemann surface, and let g and ω be a pair of a meromorphic function and a holomorphic 1-form on M^{2} such that $d s^{2}$ in (5.7) is positive definite ${ }^{4}$. Then (5.5) gives a minimal immersion.
Proof. The integration (5.6) does not depend on a choice of paths C_{z}, and then it gives a map $F: M^{2} \rightarrow \mathbb{C}^{3}$.

Examples.

Example 5.11. Let $M^{2}=\mathbb{C},(g, \omega)=(z, d z)$. Then

$$
\begin{aligned}
f: & =\operatorname{Re} \int\left(1-z^{2}, i\left(1+z^{2}\right), 2 z\right) d z \\
& =\left(u-\frac{u^{3}}{3}+u v^{2},-v-u^{2} v+\frac{v^{3}}{3}, u^{2}-v^{2}\right)
\end{aligned}
$$

is a minimal surface, where $z=u+i v$ (Figure 3,left). This surface is known as Enneper's surface.
Example 5.12. Let $M^{2}=\mathbb{C} \backslash\{0\}$ (not simply connected) and set $(g, \omega)=\left(z, i d z / z^{2}\right)$. Then f in (5.5) is represented by

$$
f=\left(\left(r-\frac{1}{r}\right) \sin \theta,\left(r-\frac{1}{r}\right) \cos \theta,-2 \theta\right) \quad\left(z=r e^{i \theta}\right)
$$

which is not well-defined on M^{2} but on the universal cover of M^{2}. The surface is congruent to the helicoid (Example 5.12).

[^0]

Example 5.11

Example $5.16(n=3)$

Figure 3: Examples of minimal surfaces.

Example 5.13. Let $M^{2}=\mathbb{C} \backslash\{0\}$ and set $(g, \omega)=\left(z, d z / z^{2}\right)$. Then f in (5.5) is represented by, with $z=r e^{i \theta}$,

$$
f=\left(-\left(r+\frac{1}{r}\right) \cos \theta,-\left(r+\frac{1}{r}\right) \sin \theta, 2 \log r\right): M^{2} \rightarrow \mathbb{R}^{3}
$$

which is the catenoid (Example 5.13).
The phenomenon as in Example 5.13 is generalized as
Proposition 5.14. Let M^{2} be a (not necessarily simply connected) Riemann surface, and let (g, ω) be a pair of a meromorphic function and a holomorphic 1-form on M^{2} such that $d s^{2}$ in (5.7) is positive definite. Assume

$$
\operatorname{Re} \int_{\gamma}\left(1-g^{2}, i\left(1+g^{2}\right), 2 g\right) \omega=0
$$

holds for all loops γ on M^{2}. Then f in (5.5) is well-defined on M^{2} and gives a minimal immersion of M^{2} into \mathbb{R}^{3}.
Corollary 5.15. Let $M^{2}=\mathbb{C} \cup\{\infty\} \backslash\left\{p_{1}, \ldots, p_{n}\right\}$, and (g, ω) as in Proposition 5.14, and assume

$$
\operatorname{Im} \operatorname{Res}_{p_{j}}\left(1-g^{2}, i\left(1+g^{2}\right), 2 g\right) \omega=0 \quad(j=1, \ldots, n)
$$

Then f as in (5.5) is a minimal immersion defined on M^{2}.
Example 5.16. Let $n \geqq 2$ be an integer, and

$$
M^{2}=\mathbb{C} \cup\{\infty\} \backslash\left\{1, \zeta, \ldots, \zeta^{n-1}\right\}, \quad \zeta=e^{2 \pi i / n}
$$

Then (g,omega) $=\left(z^{n-1}, \frac{d z}{\left(z^{n}-1\right)^{2}}\right)$ satisfies the assumptions of Corollary 5.15, and hence there exists a minimal immersion $f: M^{2} \rightarrow \mathbb{R}^{3}$ with (g, ω). Such a series of minimal surfaces are called the Jorge-Meeks' surfaces.

References

[5-1] R. Osserman, A survey of minimal surfaces, Dover Publ.
[5-2] L. P. Jorge and W. H. Meeks, III, The topology of complete minimal surfaces of finite total Gaussian curvature, Topology 22 (1983), 203221.

Exercises

$5-\mathbf{1}^{\mathrm{H}}$ Verify Example 5.16 for $n=3$.

[^0]: ${ }^{4}$ This condition is equivalent that the set of the zeros of ω is the set of poles of g, and for each pole p of g, the order of the pole p of g is exactly half of the order of zero of ω.

