5 The Weierstrass representation

Complex Analysis again. A holomorphic function f on a domain $D \subset \mathbb{C}$ is said to be *having an isolated singularity* at p if there exists a neighborhood U_p of p such that $U_p \subset D$.

Fact 5.1 (The Laurent expansion). For a holomorphic function f having an isolated singularity at p, there exists a positive number ε and complex numbers a_n ($n \in \mathbb{Z}$) such that

(5.1)
$$f(z) = \sum_{n=-\infty}^{+\infty} a_n (z-p)^n \quad (D_{p,\varepsilon} := \{z; 0 < |z-p| < \varepsilon\}).$$

The convergence of the right-hand side is uniform on any compact subset of $D_{p,\varepsilon}$

Definition 5.2. The coefficient a_{-1} in (5.1) is called the *residue* of f at an isolated singularity p, and denoted by

$$\operatorname{Res}_{z=p} f(z) := a_{-1}.$$

Definition 5.3. An isolated singularity p of holomorphic function f is a pole of (at most) order k if $a_{-m} = 0$ holds in (5.1) for m > k. If $\{m; a_m \neq 0\}$ is unbounded, p is said to be an essential singularity.

Proposition 5.4. If p is a pole of order at most k of a holomorphic function f, the residue is computed as

$$\frac{\operatorname{Res}_{z=p} f(z) = \frac{1}{(k-1)!} \lim_{z \to p} \frac{d^{k-1}}{dz^{k-1}} \{ (z-p)^k f(z) \}.$$
22. July, 2016.

Holomorphic differential forms on Riemann surfaces. Let M^2 be a Riemann surface, i.e., a 1-dimensional complex manifold and let $\{(U_{\alpha}, z_{\alpha})\}$ be a complex atlas of it. A notion of holomorphic function on M^2 is defined in a usual way: a function $f: M^2 \to \mathbb{C}$ is holomorphic if $f|_{U_{\alpha}}$ is holomorphic in z_{α} for each α . A meromorphic function on M^2 is a holomorphic function on $M^2 \setminus \Sigma$, where Σ is a discrete subset of M^2 , such that each point $p \in \Sigma$ is at most a pole of $f|_{U_{\alpha}}$ for a chart U_{α} containing p. The order of a pole at $p \in \Sigma$ is defined as the order of $f|_{U_{\alpha}}$ at p, which does not depend on a choice of coordinates.

A form "f(z) dz" on a local complex chart (U, z) is called a *holomorhpic* 1-form if f(z) is a holomorphic function in z. A holomorphic 1-form on M^2 is a collection of holomorphic 1forms $\{f_{\alpha} dz_{\alpha}\}$ satisfying the compatibility

$$f_{\alpha}(z_{\alpha}) = f_{\beta}(z_{\beta}(z_{\alpha})) \frac{dz_{\alpha}}{dz_{\beta}}$$

The collection $\{f_{\alpha} dz_{\alpha}\}$ is a meromorphic 1-form if each f_{α} is meromorphic.

Definition 5.5. Let $\omega = \{f_{\alpha} dz_{\alpha}\}$ be a meromorphic 1-form on M^2 and p a pole of ω . The *residue* of ω at p is defined as

$$\operatorname{Res}_{p} \omega := \operatorname{Res}_{z_{\alpha}=p} f_{\alpha}(z_{\alpha}),$$

were (U_{α}, z_{α}) is a complex chart around p.

Remark 5.6. The definition of the residue does not depend on a choice of coordinate charts.

Let C be a curve in a coordinate neighborhood (U, z) of M^2 , and z = z(t) $(a \leq t \leq b)$ is a parametrization of it. Then the integration of a holomorphic 1-form f(z) dz on U is defined as

(5.2)
$$\int_C f(z) dz = \int_a^b f(z(t)) \frac{dz(t)}{dt} dt.$$

Noticing that this definition does not depend on coordinate charts and parametrizations of C, one can define the line integral of a holomorphic 1-form ω on M^2 along a curve C. The following is a corollary of Cauchy's theorem of complex integrations:

Fact 5.7 (The residue principle). Let C is a closed curve of M^2 which bound a simply connected domain $D \subset M^2$, and ω be a meromorphic 1-form on a neighborhood of $D \cup C$ which have the only pole $p \in D$. Then

$$\int_C \omega = 2\pi i \operatorname{Res}_p \omega.$$

The Weierstrass representation formula. Let M^2 be an orientable manifold and $f: M^2 \to \mathbb{R}^3$ be an immersion. By Corollary 3.11, there exists a structure of Riemann surface on M^2 such that any complex coordinate is isothermal. So, without loss of generality, we may assume that M^2 is a Riemann surface and f is a conformal immersion. Moreover, if f is minimal,

(5.3)
$$\phi := \frac{\partial f}{\partial z} \colon U \longrightarrow \mathbb{C}^3$$

is a holomorphic map satisfying (4.2) and (4.3), cf., Proposition 4.4, where (U, z) is a complex coordinate chart.

Though ϕ depends on a choice of coordinate charts,

(5.4)
$$\hat{\phi} := \phi(z) \, dz$$

does not depend on coordinates. In fact, if one take another complex coordinate chart (V, w),

$$\frac{\partial f}{\partial w} dw = \frac{\partial f}{\partial z} \frac{dz}{dw} dw = \frac{\partial f}{\partial z} dz.$$

Proposition 5.8 (The Weierstrass representation). For a conformal minimal immersion $f: M^2 \to \mathbb{R}^3$ of a Riemann surface M^2 , there exists a meromorphic function g and a holomorphic 1-form ω on M^2 such that, up to translations in \mathbb{R}^3 ,

(5.5)
$$f(z) = \operatorname{Re} \int_{C_z} \left((1 - g^2), i(1 + g^2), 2g \right) \omega$$

holds, where C_z is a path on M^2 joining a base point z_0 and z.

Proof. Define $\phi = (\phi_1, \phi_2, \phi_3)$ as in (5.3). If $\phi_1 - i\phi_2$ is equivalently zero, $\phi_3 = 0$ because of (4.2). In this case, the surface is a horizontal plane, and g = 0, $\omega = a \, dz$ satisfy the conclusion. Otherwise, let $g := \frac{\phi_3}{\phi_1 - i\phi_2}$ and $\omega = \phi_1 - i\phi_2$. Since g does not depend on a choice of complex charts, g is

Since g does not depend on a choice of complex charts, g is a meromorphic function on M^2 . On the other hand, by (5.4) does not depend on coordinates, ω can be considered as a holomorphic 1-form on M^2 . By (4.2), we have

$$0 = \hat{\phi}_1^2 + \hat{\phi}_2^2 + \hat{\phi}_3^2 = (\hat{\phi}_1 - i\hat{\phi}_2)(\hat{\phi}_1 + i\hat{\phi}_2) + \phi_3^2$$

= $(\hat{\phi}_1 - i\hat{\phi}_2)\omega + g^2\omega^2$,

which implies $\hat{\phi}_1 - i\hat{\phi}_2 = -g^2\omega$, where $\hat{\phi} = \phi dz$. Hence we have $\hat{\phi} = \frac{1}{2} ((1 - g^2), i(1 + g^2), 2g)\omega$. Equation 5.5 holds because

(5.6)
$$F(z) := \int_{C_z} \hat{\phi}$$
, then $\frac{\partial}{\partial z} (F(z) + \overline{F}(z)) = \hat{\phi}$. \Box

Corollary 5.9. Let f be as in (5.5), the first fundamental form ds^2 , the unit normal vector field ν , and the second fundamental form Π are expressed as

(5.7)
$$ds^2 = (1 + |g|^2)^2 |\omega|^2,$$

(5.8)
$$\nu = \frac{1}{1+|g|^2} \left(2\operatorname{Re} g, 2\operatorname{Im} g, |g|^2 - 1 \right) = \pi^{-1}(g),$$

(5.9) $II = -\omega \, dg - \overline{\omega \, dg},$

where $\pi: S^2 \to \mathbb{C} \cup \{\infty\}$ is the stereographic projection.

Proof. Let z = u + iv be a complex coordinate. Then by the proof of (4.3), $ds^2 = E(du^2 + dv^2) = E dz d\bar{z}$, where $E = 2(|\phi_1|^2 + |\phi_2|^2 + |\phi_3|^2)$ proving the first assertion. The second assertion was the homework 4-1. The third assertion follows since the second fandamental form is expressed as

$$II = (f_{zz} \cdot \nu) dz^2 + 2(f_{z\overline{z}} \cdot \nu) dz d\overline{z} + (f_{\overline{z}\overline{z}} \cdot \nu) d\overline{z}^2. \qquad \Box$$

As seen in Corollary 5.9, the meromorphic function $g: M^2 \to \mathbb{C} \cup \{\infty\}$ can be identified with ν via the streographic projection. So we call q the *Gauss map* of f.

The following is the converse assertion of Proposition 5.8.

Theorem 5.10 (The Weierstrass representation). Let M^2 be a simply connected Riemann surface, and let g and ω be a pair of a meromorphic function and a holomorphic 1-form on M^2 such that ds^2 in (5.7) is positive definite⁴. Then (5.5) gives a minimal immersion.

Proof. The integration (5.6) does not depend on a choice of paths C_z , and then it gives a map $F: M^2 \to \mathbb{C}^3$.

Examples.

Example 5.11. Let $M^2 = \mathbb{C}$, $(g, \omega) = (z, dz)$. Then

$$f := \operatorname{Re} \int \left(1 - z^2, i(1 + z^2), 2z\right) dz$$
$$= \left(u - \frac{u^3}{3} + uv^2, -v - u^2v + \frac{v^3}{3}, u^2 - v^2\right)$$

is a minimal surface, where z = u + iv (Figure 3,left). This surface is known as *Enneper's surface*.

Example 5.12. Let $M^2 = \mathbb{C} \setminus \{0\}$ (not simply connected) and set $(g, \omega) = (z, i dz/z^2)$. Then f in (5.5) is represented by

$$f = \left(\left(r - \frac{1}{r} \right) \sin \theta, \left(r - \frac{1}{r} \right) \cos \theta, -2\theta \right) \qquad (z = re^{i\theta})$$

which is not well-defined on M^2 but on the universal cover of M^2 . The surface is congruent to the helicoid (Example 5.12).

⁴This condition is equivalent that the set of the zeros of ω is the set of poles of g, and for each pole p of g, the order of the pole p of g is exactly half of the order of zero of ω .

Example 5.11 Example 5.16 (n = 3)

Figure 3: Examples of minimal surfaces.

Example 5.13. Let $M^2 = \mathbb{C} \setminus \{0\}$ and set $(g, \omega) = (z, dz/z^2)$. Then f in (5.5) is represented by, with $z = re^{i\theta}$,

$$f = \left(-\left(r+\frac{1}{r}\right)\cos\theta, -\left(r+\frac{1}{r}\right)\sin\theta, 2\log r\right): M^2 \to \mathbb{R}^3,$$

which is the catenoid (Example 5.13).

The phenomenon as in Example 5.13 is generalized as

Proposition 5.14. Let M^2 be a (not necessarily simply connected) Riemann surface, and let (g, ω) be a pair of a meromorphic function and a holomorphic 1-form on M^2 such that ds^2 in (5.7) is positive definite. Assume

$$\operatorname{Re} \int_{\gamma} (1 - g^2, i(1 + g^2), 2g) \omega = 0$$

Sect. 5

holds for all loops γ on M^2 . Then f in (5.5) is well-defined on M^2 and gives a minimal immersion of M^2 into \mathbb{R}^3 .

Corollary 5.15. Let $M^2 = \mathbb{C} \cup \{\infty\} \setminus \{p_1, \ldots, p_n\}$, and (g, ω) as in Proposition 5.14, and assume

Im
$$\operatorname{Res}_{p_j} (1 - g^2, i(1 + g^2), 2g) \omega = 0$$
 $(j = 1, ..., n).$

Then f as in (5.5) is a minimal immersion defined on M^2 .

Example 5.16. Let $n \ge 2$ be an integer, and

$$M^{2} = \mathbb{C} \cup \{\infty\} \setminus \{1, \zeta, \dots, \zeta^{n-1}\}, \qquad \zeta = e^{2\pi i/n}.$$

Then $(g, omega) = \left(z^{n-1}, \frac{dz}{(z^n-1)^2}\right)$ satisfies the assumptions of Corollary 5.15, and hence there exists a minimal immersion $f: M^2 \to \mathbb{R}^3$ with (g, ω) . Such a series of minimal surfaces are called the *Jorge-Meeks' surfaces*.

References

- [5-1] R. Osserman, A SURVEY OF MINIMAL SURFACES, Dover Publ.
- [5-2] L. P. Jorge and W. H. Meeks, III, The topology of complete minimal surfaces of finite total Gaussian curvature, Topology 22 (1983), 203– 221.

Exercises

5-1^H Verify Example 5.16 for n = 3.