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5 The Weierstrass representation

Complex Analysis again. A holomorphic function f on a
domain D C C is said to be having an isolated singularity at p
if there exists a neighborhood U, of p such that U, C D.

Fact 5.1 (The Laurent expansion). For a holomorphic func-
tion f having an isolated singularity at p, there exists a positive
number € and complex numbers a,, (n € Z) such that

+o00
(5.1) f(z) = Z an(z—p)" (Dpe:={2;0<|z—p| <e}).
The convergence of the right-hand side is uniform on any com-
pact subset of D, .

Definition 5.2. The coefficient a_1 in (5.1) is called the residue
of f at an isolated singularity p, and denoted by

Res f(z) == a_1.
z=p

Definition 5.3. An isolated singularity p of holomorphic func-
tion f is a pole of (at most) order k if a_,, = 0 holds in (5.1)
for m > k. If {m; a,, # 0} is unbounded, p is said to be an
essential singularity.

Proposition 5.4. If p is a pole of order at most k of a holo-
morphic function f, the residue is computed as
dk—l

Res () = gy o e e =400

22. July, 2016.
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Holomorphic differential forms on Riemann surfaces.
Let M? be a Riemann surface, i.e., a 1-dimensional complex
manifold and let {(U,, z4)} be a complex atlas of it. A notion
of holomorphic function on M? is defined in a usual way: a
function f: M? — C is holomorphic if f|y, is holomorphic in
2o for each a. A meromorphic function on M? is a holomorphic
function on M? \ ¥, where ¥ is a discrete subset of M?, such
that each point p € X is at most a pole of f|y, for a chart U,
containing p. The order of a pole at p € ¥ is defined as the order
of f|y, at p, which does not depend on a choice of coordinates.

A form “f(z)dz” on a local complex chart (U, z) is called
a holomorhpic 1-form if f(z) is a holomorphic function in z.
A holomorphic 1-form on M? is a collection of holomorhpic 1-
forms {f, dz,} satisfying the compatibility

falza) = fg<zﬁ<za>>jj;.

The collection {f, dz,} is a meromorphic 1-form if each f, is
meromorphic.

Definition 5.5. Let w = {f, dz,} be a meromorphic 1-form on
M? and p a pole of w. The residue of w at p is defined as

Resw := Res fo(24),
P Za=p

were (Uy, 24) is a complex chart around p.

Remark 5.6. The definition of the residue does not depend on a
choice of coordinate charts.
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Let C be a curve in a coordinate neighborhood (U, z) of M?,
and z = z(t) (a £ ¢t £ b) is a parametrization of it. Then the
integration of a holomorphic 1-form f(z)dz on U is defined as

b
(5.2) /Cf(z)dz:/ F(=(0)) d';(tt) dt.

Noticing that this definition does not depend on coordinate
charts and parametrizations of C, one can define the line in-
tegral of a holomorphic 1-form w on M? along a curve C. The
following is a corollary of Cauchy’s theorem of complex integra-
tions:

Fact 5.7 (The residue principle). Let C is a closed curve of M?
which bound a simply connected domain D C M?, and w be a
meromorhpic 1-form on a neighborhood of DUC' which have the
only pole p € D. Then

/ w = 2mi Resw.
C P

The Weierstrass representation formula. Let M2 be an
orientable manifold and f: M? — R3 be an immersion. By
Corollary 3.11, there exists a structure of Riemann surface on
M? such that any complex coordinate is isothermal. So, without
loss of generality, we may assume that M? is a Riemann surface
and f is a conformal immersion. Moreover, if f is minimal,

(5.3) ¢:=-2:U—C?
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is a holomorphic map satisfying (4.2) and (4.3), cf., Proposi-
tion 4.4, where (U, z) is a complex coordinate chart.
Though ¢ depends on a choice of coordinate charts,

(5.4) b= ¢(2)dz
does not depend on coordinates. In fact, if one take another
complex coordinate chart (V,w),

af _0f dz of

Proposition 5.8 (The Weierstrass representation). For a con-
formal minimal immersion f: M? — R? of a Riemann surface
M?2, there exists a meromorphic function g and a holomorphic
1-form w on M? such that, up to translations in R3,

(55 f(z)=Re / (1= ¢),i(1 + ¢%), 29)

z

holds, where C, is a path on M? joining a base point zy and z.

Proof. Define ¢ = (¢1, 92, ¢3) as in (5.3). If ¢1 — i¢2 is equiva-
lently zero, ¢3 = 0 because of (4.2). In this case, the surface is
a horizontal plane, and g = 0, w = a dz satisfy the conclusion.
Otherwise, let g := ¢1f3;¢2 and w = ¢1 — ipo.

Since g does not depend on a choice of complex charts, g is
a meromorphic function on M?. On the other hand, by (5.4)
does not depend on coordinates, w can be considered as a holo-

morphic 1-form on M?2. By (4.2), we have
0= 6% + 3 + 83 = (b1 — i) (1 + ip2) + &3
= (b1 — ida)w + g°w?,
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which implies qgl — Z’(ZEQ = —g%w, where QAS = ¢ dz. Hence we have
¢ =3((1-g¢%),i(1+ g¢%),29)w. Equation 5.5 holds because

(5.6) F(z) ;:/C ¢, then %(F(Z)+F(Z)):¢. O

Corollary 5.9. Let f be as in (5.5), the first fundamental form
ds?, the unit normal vector field v, and the second fundamental
form II are expressed as

(5.7 ds® = (1+|gI)?|wl?,

(5.8) (2Reg,2Img,|g]> — 1) =7 '(9g),

y—
C1+]g?
(5.9) II = —wdg — wdg,

where w: S% — CU{oc} is the stereographic projection.

Proof. Let z = u + iv be a complex coordinate. Then by the
proof of (4.3), ds*> = E(du® + dv?) = Edzdz, where E =
2(|¢112 + |¢2|? + |¢3|?) proving the first assertion. The second
assertion was the homework 4-1. The third assertion follows
since the second fandamental form is expressed as

I = (for-v)dz® + 2(foz - v) dzdz + (fzz - v) dZ° O

As seen in Corollary 5.9, the meromorphic function g: M? —
CU{o0} can be identified with v via the streographic projection.
So we call g the Gauss map of f.

The following is the converse assertion of Proposition 5.8.
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Theorem 5.10 (The Weierstrass representation). Let M? be a
simply connected Riemann surface, and let g and w be a pair
of a meromorphic function and a holomorphic 1-form on M?
such that ds® in (5.7) is positive definite*. Then (5.5) gives a
minimal immersion.

Proof. The integration (5.6) does not depend on a choice of
paths C,, and then it gives a map F: M? — C3. O

Examples.
Example 5.11. Let M? = C, (g,w) = (2,dz). Then

f::Re/(l—ZQ,i(1+z2),2z) dz

u? 2 2 v, 2
= u—?—l—uv,—v—uv—i—?,u -

is a minimal surface, where z = u + v (Figure 3,left). This
surface is known as Enneper’s surface.

Ezample 5.12. Let M? = C\ {0} (not simply connected) and
set (g,w) = (z,idz/z?). Then f in (5.5) is represented by

= <<r - 1) sin 6, <r — 1) cosf, —29> (z = re'?)
r r

which is not well-defined on M? but on the universal cover of
M?. The surface is congruent to the helicoid (Example 5.12).

4This condition is equivalent that the set of the zeros of w is the set of
poles of g, and for each pole p of g, the order of the pole p of g is exactly
half of the order of zero of w.
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Example 5.11 Example 5.16 (n = 3)

Figure 3: Examples of minimal surfaces.

Example 5.13. Let M? = C\ {0} and set (g,w) = (z,dz/2?).
Then f in (5.5) is represented by, with z = re®,

1 1
f= (— <r+ ;) cos @, — (r—|— ;) sin9,2logr) s M? — R3,

which is the catenoid (Example 5.13).

The phenomenon as in Example 5.13 is generalized as
Proposition 5.14. Let M? be a (not necessarily simply con-
nected) Riemann surface, and let (g,w) be a pair of a meromor-

phic function and a holomorphic 1-form on M? such that ds?
in (5.7) is positive definite. Assume

Re/(l —¢%i(1+¢%),29)w =0
Y
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holds for all loops v on M?. Then f in (5.5) is well-defined on
M? and gives a minimal immersion of M? into R3.

Corollary 5.15. Let M? = CU {oo} \ {p1,---,pn}, and (g,w)
as in Proposition 5.14, and assume

ImRes(l—gz,i(1+gz),2g)w:() (j=1,...,n).
Pj

Then f as in (5.5) is a minimal immersion defined on M?.

Ezample 5.16. Let n 2 2 be an integer, and
M? =CU{oo}\{1,¢,...,¢C" 1}, ¢ =e*™/m,

Then (g,omega) = (2”*1, (anle)Q) satisfies the assumptions
of Corollary 5.15, and hence there exists a minimal immersion
f: M? — R? with (g,w). Such a series of minimal surfaces are
called the Jorge-Meeks’ surfaces.
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FEzxercises

5-1" Verify Example 5.16 for n = 3.



