4 Bernstein's Theorem

More complex analysis.

Theorem 4.1 (Liouville's theroem). A bounded holomorphic function defined on the whole complex plane \mathbb{C} is constant.

Proof. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic function such that $|f(z)| \leqq M$ for every $z \in \mathbb{C}$. Fix a point $z \in \mathbb{C}$. Then by Cauchy's integral formula, it holds that

$$
f^{\prime}(z)=\frac{1}{2 \pi i} \int_{C_{R}} \frac{f(\zeta) d \zeta}{(z-\zeta)^{2}} \quad\left(C_{R}: \zeta=z+R e^{i \theta} ;-\pi<\theta \leqq \pi\right)
$$

where R is an arbitrary positive number. Hence

$$
\begin{aligned}
\left|f^{\prime}(z)\right| & \leqq \frac{1}{2 \pi} \int_{C_{R}} \frac{|f(\zeta)||d \zeta|}{|z-\zeta|^{2}} \\
& \leqq \frac{1}{2 \pi} \int_{C_{R}} \frac{M|d \zeta|}{|z-\zeta|^{2}}=\frac{1}{2 \pi} \int_{\pi}^{\pi} \frac{M R d \theta}{R^{2}}=\frac{M}{R}
\end{aligned}
$$

Since R is arbitrary, we can conclude $f^{\prime}(z)=0$ by letting $R \rightarrow$ ∞. Moreover, since z is arbitrary, $f^{\prime}(z)=0$ holds on \mathbb{C}, proving that f is constant.

Corollary 4.2. A holomorphic function defined on \mathbb{C} into the upper-half plane $H=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$ must be constant.

[^0]Proof. Note that a linear fractional transformation

$$
F(z)=\frac{z-i}{z+i} \quad(i=\sqrt{-1})
$$

maps the upper-half plane H to the unit disc $D=\{w \in \mathbb{C}| | w \mid<$ 1\} bijectively. Then for each holomorphic function $f: \mathbb{C} \rightarrow H$, $F \circ f$ is a bounded holomorphic function defend on \mathbb{C}.

Conformal minimal surfaces. Let $f: \Sigma \rightarrow \mathbb{R}^{3}$ be an immersion, where Σ is an orientable 2-dimensional manifold. As seen in Corollary 3.11, there exists a structure of Riemann surface such that each complex coordinate $z=u+i v$ gives an isothermal coordinate system.

Definition 4.3. An immersion $f: \Sigma \rightarrow \mathbb{R}^{3}$ of a Riemann surface Σ is said to be conformal if each complex coordinate $z=u+i v$ is isothermal.

In this section, we consider conformal minimal immersions $f: \Sigma \rightarrow \mathbb{R}^{3}$. Then by virtue of Proposition, and Lemma 3.4,

$$
\begin{equation*}
\phi:=\frac{\partial f}{\partial z}\left(=\frac{1}{2}\left(\frac{\partial f}{\partial u}-i \frac{\partial f}{\partial v}\right)\right): \Sigma \rightarrow \mathbb{C}^{3} \tag{4.1}
\end{equation*}
$$

is holomorphic for each complex coordinate $z=u+i v$ of Σ. Moreover, we have

Proposition 4.4. Let $f: \Sigma \rightarrow \mathbb{R}^{3}$ be a conformal minimal immersion. Then for each complex coordinate chart ($U ; z=u+i v$)
of Σ, ϕ in (4.1) satisfies

$$
\begin{array}{r}
\left(\phi_{1}\right)^{2}+\left(\phi_{2}\right)^{2}+\left(\phi_{3}\right)^{2}=0 \\
\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}+\left|\phi_{3}\right|^{2}>0 \tag{4.3}
\end{array}
$$

where we write $\phi=\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$.
Proof. Since $\phi=(1 / 2)\left(f_{u}-i f_{v}\right)$,

$$
\begin{gathered}
\left(\phi_{1}\right)^{2}+\left(\phi_{2}\right)^{2}+\left(\phi_{3}\right)^{2}=\phi \cdot \phi=\frac{1}{4}\left(f_{u} \cdot f_{u}-f_{v} \cdot f_{v}-2 i f_{u} \cdot f_{v}\right) \\
\quad=\frac{1}{4}((E-G)-2 i F)=0
\end{gathered}
$$

where E, F and G are the components of the first fundamental form $d s^{2}=E d u^{2}+2 F d u d v+G d v^{2}=E\left(d u^{2}+d v^{2}\right)$. Then (4.2) follows. On the other hand,

$$
\begin{aligned}
\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}+\left|\phi_{3}\right|^{2} & =\phi \cdot \bar{\phi}=\frac{1}{4}\left(f_{u} \cdot f_{u}+f_{v} \cdot f_{v}\right) \\
=\frac{1}{4}(E+G) & =\frac{E}{2}>0
\end{aligned}
$$

proving (4.3).
Bernstein's Theorem We prove the following global result of minimal surfaces:
Theorem 4.5 (Bernstein, 1915). Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a smooth function defined on the whole plane \mathbb{R}^{2}, and assume the graph of φ is minimal surface. Then $\varphi(x, y)$ is a linear function in (x, y). In other words, the only entire minimal graphs are planes.

Proof. Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a solution of the minimal surface equation

$$
\begin{equation*}
\left(1+\varphi_{y}^{2}\right) \varphi_{x x}-2 \varphi_{x} \varphi_{y} \varphi_{x y}+\left(1+\varphi_{x}^{2}\right) \varphi_{y y}=0 \tag{4.4}
\end{equation*}
$$

Then there exists functions ξ and η satisfying

$$
\begin{align*}
& d \xi=\left(1+\frac{1+\varphi_{x}^{2}}{W}\right) d x+\frac{\varphi_{x} \varphi_{y}}{W} d y \tag{4.5}\\
& d \eta=\frac{\varphi_{x} \varphi_{y}}{W} d x+\left(1+\frac{1+\varphi_{y}^{2}}{W}\right) d y \tag{4.6}
\end{align*}
$$

where $W=\sqrt{1+\varphi_{x}^{2}+\varphi_{y}^{2}}$. Moreover, by Proposition 3.13, we know that the map

$$
\mathbb{R}^{2} \ni(x, y) \longmapsto(\xi, \eta) \in \mathbb{R}^{2}
$$

is a diffeomorphism and

$$
f: \mathbb{C} \ni \zeta:=\xi+i \eta \longmapsto(x(\xi, \eta), y(\xi, \eta), \varphi(x(\xi, \eta), y(\xi, \eta))) \in \mathbb{R}^{3},
$$

is a conformal reparametrization of the graph of φ. We let ϕ as in (4.1):

$$
\phi=\left(\phi_{1}, \phi_{2}, \phi_{3}\right)=\frac{\partial f}{\partial \zeta}=\left(\frac{\partial x}{\partial \zeta}, \frac{\partial y}{\partial \zeta}, \frac{\partial \varphi}{\partial \zeta}\right), \quad(\zeta=\xi+i \eta)
$$

Since
(4.7) $4 \operatorname{Im}\left(\phi_{1} \bar{\phi}_{2}\right)=4 \operatorname{Im}\left(x_{\zeta} \overline{y_{\zeta}}\right)=\operatorname{Im}\left(x_{\xi}-i x_{\eta}\right)\left(y_{\xi}+i y_{\eta}\right)$

$$
\begin{aligned}
& =x_{\xi} y_{\eta}-y_{\xi} x_{\eta}=\operatorname{det}\left(\begin{array}{ll}
x_{\xi} & x_{\eta} \\
y_{\xi} & y_{\eta}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}
\xi_{x} & \xi_{y} \\
\eta_{x} & \eta_{y}
\end{array}\right)^{-1} \\
& =\left(1+\frac{1+\varphi_{x}^{2}}{W}\right)\left(1+\frac{1+\varphi_{y}^{2}}{W}\right)-\frac{\varphi_{x}^{2} \varphi_{y}^{2}}{W^{2}}>0
\end{aligned}
$$

both ϕ_{1} and ϕ_{2} never vanish, and

$$
\operatorname{Im} \frac{\phi_{1}}{\phi_{2}}=\frac{\operatorname{Im} \phi_{1} \overline{\phi_{2}}}{\left|\phi_{2}\right|^{2}}>0
$$

Then we have a holomorphic map of \mathbb{C} into the upper half plane

$$
\frac{\phi_{1}}{\phi_{2}}: \mathbb{C} \longrightarrow H
$$

Hence by Liouville's Theorem 4.1, we conclude that

$$
\text { (4.8) } \quad \phi_{1}=a \phi_{2}, \quad \text { that is } \quad \frac{\partial x}{\partial \zeta}=a \frac{\partial y}{\partial \zeta} \quad(a \in \mathbb{C} \backslash\{0\})
$$

Moreover, by (4.7), we have
(4.9) $\operatorname{Im}\left(\phi_{1} \overline{\phi_{2}}\right)=\operatorname{Im}\left(a\left|\phi_{2}\right|^{2}\right)>0$, that is, $\quad \operatorname{Im} a>0$.

By (4.8), and noticing x and y are real valued functions, we have

$$
\frac{\partial x}{\partial \bar{\zeta}}=\frac{\overline{\partial x}}{\partial \zeta}=\overline{a \frac{\partial y}{\partial \zeta}}=\bar{a} \frac{\partial y}{\partial \bar{\zeta}}
$$

Then, if we set $w=x+i y$,

$$
\frac{\partial w}{\partial \bar{\zeta}}=\frac{\partial x}{\partial \bar{\zeta}}+i \frac{\partial y}{\partial \bar{\zeta}}=(\bar{a}+i) \frac{\partial y}{\partial \bar{\zeta}}, \quad \frac{\partial \bar{w}}{\partial \bar{\zeta}}=\frac{\partial x}{\partial \bar{\zeta}}-i \frac{\partial y}{\partial \bar{\zeta}}=(\bar{a}-i) \frac{\partial y}{\partial \bar{\zeta}}
$$

hold. We set
(4.10) $q:=q(\zeta)=(-\bar{a}+i) w+(\bar{a}+i) \bar{w}, \quad(w(\zeta)=x(\zeta)+i y(\zeta))$.

Then we have

$$
\frac{\partial q}{\partial \bar{\zeta}}=(-\bar{a}+i)(\bar{a}+i) \frac{\partial y}{\partial \bar{\zeta}}+(\bar{a}+i)(\bar{a}-i) \frac{\partial y}{\partial \bar{\zeta}}=0
$$

that is, $\zeta \mapsto q$ is a holomorphic function. If we write $q=u+i v$ and $a=s+i t$, we have

$$
\binom{u}{v}=\left(\begin{array}{ll}
0 & -2 t \tag{4.11}\\
2 & -2 s
\end{array}\right)\binom{x}{y} \quad(t=\operatorname{Im} a>0)
$$

that is, x and y are linear functions of u and v.
By holomorphicity of $w,(u, v)$ is also an isothermal parameter of the surface. We set

$$
\tilde{\phi}=\left(\tilde{\phi}_{1}, \tilde{\phi}_{2}, \tilde{\phi}_{3}\right):=\left(\frac{\partial x}{\partial w}, \frac{\partial y}{\partial w}, \frac{\partial z}{\partial w}\right) .
$$

Since x and y are linear functions of u and $v, \tilde{\phi}_{1}$ and $\tilde{\phi}_{2}$ are constants. On the other hand, since w is an isothermal (complex) parameter, (4.2) holds for $\tilde{\phi}$:

$$
\tilde{\phi}_{3}^{2}=-\tilde{\phi}_{1}^{2}-\tilde{\phi}_{2}^{2}=\text { constant } .
$$

Therefore, the third coordinate z is also a liner function of u and v. Hence

$$
z(u, v)=\varphi(x(u, v), y(u, v))
$$

is a liner function in (u, v). Thus, by (4.11), $\varphi(x, y)$ is a linear function.

References

[4-1] Osserman, R., A survey of minimal surfaces, Dover Publ.

Exercises

Solve one of the following problems:
4-1 ${ }^{\mathrm{H}}$ Let $f: \mathbb{C} \subset U \rightarrow \mathbb{R}^{3}$ be a conformal minimal immersion and set $\phi=\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$ as (4.1). Show that
(1) the first fundamental form of f is expressed as

$$
\begin{aligned}
& d s^{2}=e^{2 \sigma}\left(d u^{2}+d v^{2}\right) \\
& \quad \text { where } e^{2 \sigma}=2\left(\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}+\left|\phi_{3}\right|^{2}\right),
\end{aligned}
$$

(2) the unit normal vector field ν is expressed as

$$
\begin{aligned}
\nu & =\frac{f_{u} \times f_{v}}{\left|f_{u} \times f_{v}\right|} \\
& =\frac{-i\left(\phi_{2} \overline{\phi_{3}}-\phi_{3} \overline{\phi_{2}}, \phi_{3} \overline{\phi_{1}}-\phi_{1} \overline{\phi_{3}}, \phi_{1} \overline{\phi_{2}}-\phi_{2} \overline{\phi_{1}}\right)}{\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}+\left|\phi_{3}\right|^{2}},
\end{aligned}
$$

(3) and the composition of $\nu: U \rightarrow S^{2}$ with the stereographic projection

$$
\pi \circ S^{2} \ni\left(\nu_{1}, \nu_{2}, \nu_{3}\right) \longmapsto \frac{1-\nu_{3}}{\nu_{1}+i \nu_{2}} \in \mathbb{C} \cup\{\infty\}
$$

is expressed as

$$
\pi \circ \nu=\frac{\phi_{3}}{\phi_{1}-i \phi_{2}},
$$

here $z=u+i v$ is the complex coordinate of U. (Hint: $\left.\phi_{3}^{2}=-\left(\phi_{1}+i \phi_{2}\right)\left(\phi_{1}-i \phi_{2}\right).\right)$
$4-2^{\mathrm{H}}$ Find a non-trivial (non-linear) solution $\varphi(x, y)$ of the partial differential equation

$$
\left(1-\varphi_{y}^{2}\right) \varphi_{x x}+2 \varphi_{x} \varphi_{y} \varphi_{x y}+\left(1-\varphi_{x}^{2}\right) \varphi_{y y}=0
$$

which is defined on whole \mathbb{R}^{2} (Hint: Try a similar method as in 2).

[^0]: 15. July, 2016.
