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3 Isothermal Coordinates

A Review of Complex Analysis. Let C be the complex
plane. A C'-function?f: C 3 D € z — w = f(z) € C defined
on a domain D is said to be holomorphic if the derivative

exists for all z € D.

Fact 3.1 (The Cauchy-Riemann equation). A function f: C >
D — C is holomorphic if and only if
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holds on D, where w = f(2), z = &+in, w = u+iv (i = /—-1).

(3.1)

For functions of complex variable z = £ + in, we set
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Corollary 3.2. For a complez function f, (3.1) is equivalent to

of _
0z
Proof. Setting w = f(z) = u+iv and z = £ +in. Then the real
(resp. imaginary) part of the left-hand side of (3.3) coincides
with the first (resp. second) equation of (3.1). O
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20f class C! as a map from D C R? to R2.

(3.3) 0.

Sect. 3 (20160715) 18

Definition 3.3. A real-valued function ¢: R? D U — R is said
to be harmonic if it satisfies the Laplace equation

Ap 1= pee + oy = 0.

Lemma 3.4. If a function p: C D D — R is harmonic, Op/dz
s a holomorphic function on D, where z is a complex coordinate

of C.
Proof. Corollary 3.2 yields the conclusion since
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Isothermal Coordinates.

Definition 3.5. Let f: M? — R? be an immersion of 2-manifold,
and ds? its first fundamental form. A local coordinate chart
(U; (u,v)) of M? is called an isothermal coordinate system or a
conformal coordinate system if ds? is written in the form?3

ds® = e (du® + dv?), o =o(u,v) € C(U).

Ezxample 3.6. A parametrization of the catenoid in Example 2.4
is isothermal if ¢ = 1. In fact, the first fundamental form is
expressed as cosh?(u/a)(du? + a?dv?).

3The notion of the isothermal coordinate system can be defined not only
for surfaces but also for Riemannian 2-manifolds, that is, differentiable 2-
manifolds M? with Riemannian metrics ds? (the first fundamental forms).
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Definition 3.7. Two charts (Uj; (uj,v;)) (j = 1,2) of a 2-
manifold M? has the same (resp. opposite) orientation if the Ja-
cobian % is positive (resp. negative) on UyNUs. A manifold
M? is said to be oriented if there exists an atlas { (Uj; (u;,v;))}
such that all charts have the same orientations. A choice of such

an atlas is called an orientation of MZ2.

Proposition 3.8. Let (u,v) be an isothermal coordinate sys-
tem of a surface. Then another coordinate system (§,7) is also
isothermal if and only if the parameter change (&,1) — (u,v)
satisfy

ou ov ou ov
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where ¢ = 1 (resp. —1) if (u,v) and (§,n) has the same (resp.
the opposite) orientation.

Proof. If we write ds? = 27 (du® + dv?), it holds that
ds? — 20 ((Ug + v?) d€? + 2(ugvy, + uyve) d€ dn+ (ufl + U?]) dn2).

Thus, (&,7) is isothermal if and only if

(3.4)

(3.5) ug + vg = u?l + 1172,7 (ugvy + unve) = 0.

The second equality yields (ve,v,;) = e(—uy, ug) for some func-
tion €. Substituting this into the first equation of (3.5), we get
€ = +1. Moreover,

O(u,v) v e w o
= det 7] = det n\ _ .
8(€a 77) ¢ (UE UT]) ¢ (—6% EUg E(u§ + un)

Thus, the conclusion follows. O]
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Corollary 3.9. Let (u,v) is an isothermal coordinate system.
Then a coordinate system (€, n) is isothermal and has the same
orientation as (u,v) if and only if the map & + in — u + v
(i = v/—1) is holomorphic.

Proof. Equations 3.4 for € = +1 are nothing but the Cauchy-
Riemann equations (3.1). O

Fact 3.10 (Section 15 in [3-1]). Let (M?,ds?) be an arbitrary
Riemannian manifold. Then for each p € M?, there exists an
isothermal chart containing p.

Corollary 3.11. Any oriented Riemannian 2-manifold (M?, ds?)
has a structure of Riemann surface (i.e., a complex 1-manifold)
such that for each complex coordinate z = u + iv, (u,v) is an
isothermal coordinate system for ds>.

Proof. Let p € M? and take a local coordinate chart (Up; (, y))
at p which is compatible to the orientation of M?2. Then by
Fact 3.10, their exists a isothermal coordinate system (Vj; (up, vp))
at p. Moreover, replacing (u,v) by (v, u) if necessary, we can
take (u,v) which has the same orientation of (x,y). Thus, we
have an atlas {(V}; (up,v,))} consists of isothermal coordinate
systems. Since each chart is compatible of the orientation, the
coordinate change z, = up +1iv, = uq+1iv4 = 24 is holomorphic.
Hence we get a complex atlas {(V};2p) }. O

Isothermal Coordinates for Minimal surfaces. Though
existence of isothermal parameters are guaranteed as Fact 3.10,
we shall give an alternative proof of it for minimal surfaces. The
proof is due to [3-2].
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Lemma 3.12 (The Poincaré lemma [Theorem 12.2 in [3-1]]).
Let D C R? be a simply connected domain, and let \, p be
smooth functions defined on D. If

Ae = [, that is dw =0 for w=Md¢+ pdn,
then there exists a smooth function o on D such that
e =N, oy = [, that is, do = w.

Proposition 3.13. Assume that the graph of ¢: D — R de-
fined on a disc Dg = {(z,y); ¥>+y? < R?} is minimal surface.
Then there exists smooth map

X: D > (z,y) — (£(z,y),0(z,y)) € X(Dr) C R?
such that
(1) X: D — X(Dg) is a diffeomorphism with X (0) =0,
(2) (&,m) is an isothermal parameter of the graph z = ¢(x,y).
(3) X(Dr) D {(&n); € +n* < R?}.

Proof. By the assumption, ¢ satisfies (2.2):

(3.6) (1 + ©2) Pz = 2000y ay + (1 + 93 )pyy = 0.
Let W= /1 + 42 + ¢2 and set

1+ ¢2 . 1+ ¢2
(37) Al = 14 M1 = )\2 = Puy M2 = y.

w w

Sect. 3 (20160715) 22

So one can show that (A1), = (t1)2 and (A2)y = (p2)z. Then

by Lemma 3.12, there exist smooth functions «, 8 such that
aw:Ah Ay = U1, /Bw:AQa /By:U2

Adding constants, we may assume «(0,0) = $(0,0) = 0. Using

these, we define a map X = (¢,7): Dr — R? by

(38) &y =a+aly,y),  nlzy) =y+Br,y).

By definition, the Jacobian of X is computed as

o,m) _ ¢ I+A
A(z,y) Ao 1+ po

Hence X is a local diffeomorphism. So, to prove (1), it is suffi-
cient to show that X is injective: Fix &g = (x0,%0) € Dg and
h = (h, k) such that x; := &g+ h € Dr. We set ¢; := « + th
0=t=1), Xy :=X(xy), 1:(04(3%)’5(3%))7 and

>:2(2+<pi+<p§)>0.

q(t) ==h- (uw—ag) (0=t=1).
Then by the mean value theorem, it holds that
h-(a; —ap) =¢ (1) =h-a(1) = h*\; + hk(u1 + \2) + k?po
=W (14 2)h® + 2p.0,hk + (1 + @2)k?) > 0

for some 7 € (0,1), because the quadratic form in (h, k) of the
right-hand side is positive definite. Hence

(39) \X(x0+h) —X(.’Bo)|2 = |.’B1 —.’130—|—0L1 —a0|2
= |h|?> +2h - (a1 — ap) + |1 — ag|* = |h|?,
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which proves the injectivity of X.
By definition, d§¢ = (14 A1) dz + p1 dy, and dn = Ao dx +
(14 p2) dy hold. So,

1\2
(3.10) d&* +dn? = (1 + W) ds?,
ds* = (14 2) da® + 2p,p, dvdy + (1 + @z) dy?,

proving (2).

Finally, we prove (3). Let p := inf{|X|| X € X(Dg)°}.
Then p > 0 because X is a diffeomorphism and X (0) = O.
Since the result is obvious if p = 400, we consider the case
p € (0,00). The set X (Dgr)¢ is a closed subset in R? because X
is a diffeomorphism. Hence there exists X, € X(Dg)® with
| X, = p. Since X, € 0X(Dgr)® = 0X(Dg), there exists
a sequence {X,} C X(Dg) which convergences to X ,. The
inverse image of {x, := X 1(X,)} of such a sequence is a
sequence in Dpg, which does not accumlate in Dg. Hence, by
taking a subsequence if necessary, {x,, } converges to xp € 9Dpg,
that is, |xg| = R. Here, setting @y = (0,0) in (3.9), we have
|z,,| £ | X,|, and then, |X,| 2 R, that is, X(Dgr)® C D%,
proving (3). O

The minimal surface equation. The equation for minimal
surfaces are linearlized by the isothermal coordinate system:

Proposition 3.14. Let f: R? D D — R? be a surface, and
assume the parameter (u,v) is isothermal. Then f is minimal
if and only if Af = fuu + foo =0.
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Proof. Write the first fundamental form as ds? = 27 (du?+dv?).
Then f, - fu = fo- fo =€ and f, - f, = 0 hold. So

1
fuu . fu = §(fu . fu)u - O—ueza’
1
2
that is (fuw + fov) - fu = 0. Similarly, one can show (fuu + fov) -

f» = 0 and hence fy, + fuo is parallel to the unit normal vector
v. On the other hand, the mean curvature H is computed as
_ L+N _ (fuu+fvv)'V

3 _ 20
H= 2¢20 9020 , thatis, Af=2He*v. O

fvv . fu = (fv . fu)v - fv : fvu = - (fv . fv)u = *Uuezaa
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Ezxercises
3-1" Consider two minimal surfaces

fu,v) = (coshucosv, coshusinv, u),

g(s,t) = (scost, ssint,t).

(1) Show that (u,v) is an isothermal parameter of f.

(2) Show that there exists a isothermal parameter (u,v)
of g.



