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3 Isothermal Coordinates

A Review of Complex Analysis. Let C be the complex
plane. A C1-function2f : C ∋ D ∈ z 7→ w = f(z) ∈ C defined
on a domain D is said to be holomorphic if the derivative

f ′(z) := lim
h→0

f(z + h) − f(z)

h

exists for all z ∈ D.

Fact 3.1 (The Cauchy-Riemann equation). A function f : C ∋
D → C is holomorphic if and only if

(3.1)
∂u

∂ξ
=

∂v

∂η
and

∂u

∂η
= −∂v

∂ξ

holds on D, where w = f(z), z = ξ + iη, w = u+ iv (i =
√

−1).

For functions of complex variable z = ξ + iη, we set

(3.2)
∂

∂z
:=

1

2

(
∂

∂ξ
− i

∂

∂η

)
,

∂

∂z̄
:=

1

2

(
∂

∂ξ
+ i

∂

∂η

)
.

Corollary 3.2. For a complex function f , (3.1) is equivalent to

(3.3)
∂f

∂z̄
= 0.

Proof. Setting w = f(z) = u + iv and z = ξ + iη. Then the real
(resp. imaginary) part of the left-hand side of (3.3) coincides
with the first (resp. second) equation of (3.1).
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2Of class C1 as a map from D ⊂ R2 to R2.
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Definition 3.3. A real-valued function φ : R2 ⊃ U → R is said
to be harmonic if it satisfies the Laplace equation

∆φ := φξξ + φηη = 0.

Lemma 3.4. If a function φ : C ⊃ D → R is harmonic, ∂φ/∂z
is a holomorphic function on D, where z is a complex coordinate
of C.

Proof. Corollary 3.2 yields the conclusion since

∂

∂z̄

∂φ

∂z
=

∂2φ

∂z̄∂z
=

1

4
∆φ.

Isothermal Coordinates.

Definition 3.5. Let f : M2 → R3 be an immersion of 2-manifold,
and ds2 its first fundamental form. A local coordinate chart(
U ; (u, v)

)
of M2 is called an isothermal coordinate system or a

conformal coordinate system if ds2 is written in the form3

ds2 = e2σ(du2 + dv2), σ = σ(u, v) ∈ C∞(U).

Example 3.6. A parametrization of the catenoid in Example 2.4
is isothermal if a = 1. In fact, the first fundamental form is
expressed as cosh2(u/a)(du2 + a2dv2).

3The notion of the isothermal coordinate system can be defined not only
for surfaces but also for Riemannian 2-manifolds, that is, differentiable 2-
manifolds M2 with Riemannian metrics ds2 (the first fundamental forms).
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Definition 3.7. Two charts
(
Uj ; (uj , vj)

)
(j = 1, 2) of a 2-

manifold M2 has the same (resp. opposite) orientation if the Ja-

cobian ∂(u2,v2)
∂(u1,v1)

is positive (resp. negative) on U1∩U2. A manifold

M2 is said to be oriented if there exists an atlas
{(

Uj ; (uj , vj)
)}

such that all charts have the same orientations. A choice of such
an atlas is called an orientation of M2.

Proposition 3.8. Let (u, v) be an isothermal coordinate sys-
tem of a surface. Then another coordinate system (ξ, η) is also
isothermal if and only if the parameter change (ξ, η) 7→ (u, v)
satisfy

(3.4)
∂u

∂ξ
= ε

∂v

∂η
,

∂u

∂η
= −ε

∂v

∂ξ
,

where ε = 1 (resp. −1) if (u, v) and (ξ, η) has the same (resp.
the opposite) orientation.

Proof. If we write ds2 = e2σ(du2 + dv2), it holds that

ds2 = e2σ
(
(u2

ξ + v2
ξ ) dξ2 + 2(uξvη + uηvξ) dξ dη + (u2

η + v2
η) dη2

)
.

Thus, (ξ, η) is isothermal if and only if

(3.5) u2
ξ + v2

ξ = u2
η + v2

η, (uξvη + uηvξ) = 0.

The second equality yields (vξ, vη) = ε(−uη, uξ) for some func-
tion ε. Substituting this into the first equation of (3.5), we get
ε = ±1. Moreover,

∂(u, v)

∂(ξ, η)
= det

(
uξ uη

vξ vη

)
= det

(
uξ uη

−εuη εuξ

)
= ε(u2

ξ + u2
η).

Thus, the conclusion follows.
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Corollary 3.9. Let (u, v) is an isothermal coordinate system.
Then a coordinate system (ξ, η) is isothermal and has the same
orientation as (u, v) if and only if the map ξ + iη 7→ u + iv
(i =

√
−1) is holomorphic.

Proof. Equations 3.4 for ε = +1 are nothing but the Cauchy-
Riemann equations (3.1).

Fact 3.10 (Section 15 in [3-1]). Let (M2, ds2) be an arbitrary
Riemannian manifold. Then for each p ∈ M2, there exists an
isothermal chart containing p.

Corollary 3.11. Any oriented Riemannian 2-manifold (M2, ds2)
has a structure of Riemann surface (i.e., a complex 1-manifold)
such that for each complex coordinate z = u + iv, (u, v) is an
isothermal coordinate system for ds2.

Proof. Let p ∈ M2 and take a local coordinate chart
(
Up; (x, y)

)

at p which is compatible to the orientation of M2. Then by
Fact 3.10, their exists a isothermal coordinate system

(
Vp; (up, vp)

)

at p. Moreover, replacing (u, v) by (v, u) if necessary, we can
take (u, v) which has the same orientation of (x, y). Thus, we
have an atlas

{(
Vp; (up, vp)

)}
consists of isothermal coordinate

systems. Since each chart is compatible of the orientation, the
coordinate change zp = up +ivp 7→ uq +ivq = zq is holomorphic.
Hence we get a complex atlas

{(
Vp; zp

)}
.

Isothermal Coordinates for Minimal surfaces. Though
existence of isothermal parameters are guaranteed as Fact 3.10,
we shall give an alternative proof of it for minimal surfaces. The
proof is due to [3-2].
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Lemma 3.12 (The Poincaré lemma [Theorem 12.2 in [3-1]]).
Let D ⊂ R2 be a simply connected domain, and let λ, µ be
smooth functions defined on D. If

λξ = µη, that is dω = 0 for ω = λ dξ + µdη,

then there exists a smooth function α on D such that

αξ = λ, αη = µ, that is, dα = ω.

Proposition 3.13. Assume that the graph of φ : DR → R de-
fined on a disc DR := {(x, y) ; x2+y2 < R2} is minimal surface.
Then there exists smooth map

X : DR ∋ (x, y) 7−→
(
ξ(x, y), η(x, y)

)
∈ X(DR) ⊂ R2

such that

(1) X : DR → X(DR) is a diffeomorphism with X(0) = 0,

(2) (ξ, η) is an isothermal parameter of the graph z = φ(x, y).

(3) X(DR) ⊃ {(ξ, η) ; ξ2 + η2 < R2}.

Proof. By the assumption, φ satisfies (2.2):

(3.6) (1 + φ2
x)φxx − 2φxφyφxy + (1 + φ2

y)φyy = 0.

Let W :=
√

1 + φ2
x + φ2

y and set

(3.7) λ1 :=
1 + φ2

x

W
, µ1 = λ2 :=

φxφy

W
, µ2 :=

1 + φ2
y

W
.
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So one can show that (λ1)y = (µ1)x and (λ2)y = (µ2)x. Then
by Lemma 3.12, there exist smooth functions α, β such that

αx = λ1, αy = µ1, βx = λ2, βy = µ2.

Adding constants, we may assume α(0, 0) = β(0, 0) = 0. Using
these, we define a map X = (ξ, η) : DR → R2 by

(3.8) ξ(x, y) := x + α(x, y), η(x, y) := y + β(x, y).

By definition, the Jacobian of X is computed as

∂(ξ, η)

∂(x, y)
= det

(
1 + λ1 µ1

λ2 1 + µ2

)
= 2(2 + φ2

x + φ2
y) > 0.

Hence X is a local diffeomorphism. So, to prove (1), it is suffi-
cient to show that X is injective: Fix x0 = (x0, y0) ∈ DR and
h = (h, k) such that x1 := x0 + h ∈ DR. We set xt := x + th
(0 ≦ t ≦ 1), Xt := X(xt), αt :=

(
α(xt), β(xt)

)
, and

q(t) := h · (αt − α0) (0 ≦ t ≦ 1).

Then by the mean value theorem, it holds that

h · (α1 − α0) = q′(τ) = h · α′(τ) = h2λ1 + hk(µ1 + λ2) + k2µ2

= W−1
(
(1 + φ2

x)h2 + 2φxφyhk + (1 + φ2
y)k2

)
> 0

for some τ ∈ (0, 1), because the quadratic form in (h, k) of the
right-hand side is positive definite. Hence

|X(x0 + h) − X(x0)|2 = |x1 − x0 + α1 − α0|2(3.9)

= |h|2 + 2h · (α1 − α0) + |α1 − α0|2 ≧ |h|2,
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which proves the injectivity of X.
By definition, dξ = (1 + λ1) dx + µ1 dy, and dη = λ2 dx +

(1 + µ2) dy hold. So,

(3.10) dξ2 + dη2 =

(
1 +

1

W

)2

ds2,

ds2 = (1 + φ2
x) dx2 + 2φxφy dx dy + (1 + φ2

y) dy2,

proving (2).
Finally, we prove (3). Let ρ := inf{|X| | X ∈ X(DR)c}.

Then ρ > 0 because X is a diffeomorphism and X(0) = 0.
Since the result is obvious if ρ = +∞, we consider the case
ρ ∈ (0,∞). The set X(DR)c is a closed subset in R2 because X
is a diffeomorphism. Hence there exists Xρ ∈ X(DR)c with
|Xρ| = ρ. Since Xρ ∈ ∂X(DR)c = ∂X(DR), there exists
a sequence {Xn} ⊂ X(DR) which convergences to Xρ. The
inverse image of {xn := X−1(Xn)} of such a sequence is a
sequence in DR, which does not accumlate in DR. Hence, by
taking a subsequence if necessary, {xn} converges to xR ∈ ∂DR,
that is, |xR| = R. Here, setting x0 = (0, 0) in (3.9), we have
|xn| ≦ |Xn|, and then, |Xρ| ≧ R, that is, X(DR)c ⊂ Dc

R,
proving (3).

The minimal surface equation. The equation for minimal
surfaces are linearlized by the isothermal coordinate system:

Proposition 3.14. Let f : R2 ⊃ D → R3 be a surface, and
assume the parameter (u, v) is isothermal. Then f is minimal
if and only if ∆f = fuu + fvv = 0.
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Proof. Write the first fundamental form as ds2 = e2σ(du2+dv2).
Then fu · fu = fv · fv = e2σ and fu · fv = 0 hold. So

fuu · fu =
1

2
(fu · fu)u = σue2σ,

fvv · fu = (fv · fu)v − fv · fvu = −1

2
(fv · fv)u = −σue2σ,

that is (fuu + fvv) · fu = 0. Similarly, one can show (fuu + fvv) ·
fv = 0 and hence fuu + fvv is parallel to the unit normal vector
ν. On the other hand, the mean curvature H is computed as

H =
L + N

2e2σ
=

(fuu + fvv) · ν

2e2σ
, that is, ∆f = 2He2σν.
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Exercises

3-1H Consider two minimal surfaces

f(u, v) = (cosh u cos v, cosh u sin v, u),

g(s, t) = (s cos t, s sin t, t).

(1) Show that (u, v) is an isothermal parameter of f .

(2) Show that there exists a isothermal parameter (u, v)
of g.


