2 Classical Examples

Graphs. For a C^{∞} function $\varphi(x, y)$ on a domain (or an open set) $D \subset \mathbb{R}^{2}$, its graph is considered as a parametrized surface

$$
\begin{equation*}
f: D \ni(x, y) \longmapsto(x, y, \varphi(x, y)) \in \mathbb{R}^{3} . \tag{2.1}
\end{equation*}
$$

The surface (2.1) is minimal if and only if
(2.2) $\left(2 \delta^{3} H=\right)\left(1+\varphi_{y}^{2}\right) \varphi_{x x}-2 \varphi_{x} \varphi_{y} \varphi_{x y}+\left(1+\varphi_{x}^{2}\right) \varphi_{y y}=0$, where $\delta=\sqrt{1+\varphi_{x}^{2}+\varphi_{y}^{2}}$. The (nonlinear, elliptic) partial differential equation (2.2) is called the minimal surface equation. Example 2.1. A linear function $\varphi(x, y)=a x+b y+c(a, b$ and c are constants) satisfies (2.2), and its graph is a plane. It is known that the entire (i.e., defined on whole \mathbb{R}^{2}) solution of (2.2) is a linear function (Bernstein [2-1], [2-2]).

Example 2.2. The graph of the function

$$
\begin{aligned}
& \text { (2.3) } \varphi(x, y)=\frac{1}{a} \log \frac{\cos a y}{\cos a x} \quad(a>0 \text { is a constant }) \\
& (x, y) \in \bigcup_{\substack{m, n \in \mathbb{Z} \\
m+n: \text { even }}}\left\{(x, y) \in \mathbb{R}^{2}| | a x-m \pi\left|<\frac{\pi}{2},|a y-n \pi|<\frac{\pi}{2}\right\}\right. \\
&
\end{aligned}
$$

is a minimal surface, called the Scherk surface (Figure 1). On the domain $\{(x, y) ;|a x|<\pi / 2,|a y|<\pi / 2\}, \varphi$ is expressed as

$$
\varphi(x, y)=\frac{1}{a} \log \cos a x-\frac{1}{a} \log \cos a y .
$$

Figure 1: the Scherk surface

In general, a graph of a function $\varphi(x, y)=F(x)+G(y)$ is called a translation surface.

Theorem 2.3. A translation minimal surface is congruent to a part of a plane or a part of the Scherk surface.

Proof. For $\varphi(x, y)=F(x)+G(y),(2.2)$ is equivalent to

$$
\begin{equation*}
\frac{F^{\prime \prime}}{1+\left(F^{\prime}\right)^{2}}=-\frac{\ddot{G}}{1+(\dot{G})^{2}}=: a \tag{2.4}
\end{equation*}
$$

Since the left-hand (resp. middle) side of (2.4) is a function depending only on x (resp. y), a must be a constant. When $a=0,(2.4)$ reduce to $F^{\prime \prime}=0, G=0$, i.e., φ is a linear function.

Assume $a \neq 0$. Without loss of generality, we may assume that $a>0$ Then the first equation in (2.4) yields $\tan ^{-1} F^{\prime}(x)=$ $a x+c_{1}$, where c_{1} is a constant. By a translation along the x axis, we can set $c_{1}=0$, and then $F(x)=-\frac{1}{a} \log \cos a x+c_{2}$,

[^0]

Figure 2: The catenoid and the helicoid.
with constant c_{2}. By a translation along the z-axis, we may set $c_{2}=0: \quad F(x)=-\frac{1}{a} \log \cos a x$. Similarly, we have $G(y)=$ $\frac{1}{a} \log \cos a y$.

Surfaces of revolution. We consider a surface of revolution
(2.5) $f(u, v)=(x(u) \cos v, x(u) \sin v, z(u))$,

$$
\gamma(u):=(x(u), z(u)): \mathbb{R} \supset I \rightarrow \mathbb{R}^{2}, \quad x(u) \neq 0
$$

where γ is a regular curve on the $x z$-plane, called the profile curve of the surface of revolution.
Example 2.4. Let $\gamma(u)=\left(a \cosh \frac{u}{a}, u\right)$, that is, γ is the graph $x=a \cosh \frac{z}{a}$ on the $x z$-plane, called the catenary. Then the surface (2.5) is minimal, called catenoid (Figure. 2, left).

Theorem 2.5. A minimal surface of revolution is congruent to a part of the catenoid or the plane.
Proof. We assume that $x(u)>0$ and u in (2.5) is the arclength parameter of γ :

$$
\begin{equation*}
\left(x^{\prime}\right)^{2}+\left(z^{\prime}\right)^{2}=1 \quad\left({ }^{\prime}=d / d u\right) \tag{2.6}
\end{equation*}
$$

Then f is minimal if and only if

$$
\begin{equation*}
2 H=x^{\prime} z^{\prime \prime}-z^{\prime} x^{\prime \prime}+\frac{z^{\prime}}{x}=0 . \tag{2.7}
\end{equation*}
$$

We shall determine $(x(u), z(u))$ satisfying (2.7) and (2.6).
Assume $(x(u), z(u))$ satisfy these equations and consider the case that $z^{\prime} \neq 0$ for some interval I^{\prime}. By a reflection about the x-axis, we may assume $z^{\prime}>0$ on I^{\prime}. Differentiating (2.6), we have $x^{\prime} x^{\prime \prime}+z^{\prime} z^{\prime \prime}=0$. Hence, noticing z^{\prime} is positive on I^{\prime}, (2.7) is equivalent to

$$
\begin{aligned}
0 & =z^{\prime}\left(x^{\prime} z^{\prime \prime}-z^{\prime} x^{\prime \prime}+\frac{z^{\prime}}{x}\right)=x^{\prime} z^{\prime} z^{\prime \prime}-\left(z^{\prime}\right)^{2} x^{\prime}+\frac{\left(z^{\prime}\right)^{2}}{x} \\
& =-x^{\prime} x^{\prime} x^{\prime \prime}-\left(1-\left(x^{\prime}\right)^{2}\right) x^{\prime \prime}+\frac{1-\left(x^{\prime}\right)^{2}}{x}=x^{\prime \prime}+\frac{1-\left(x^{\prime}\right)^{2}}{x} .
\end{aligned}
$$

Since $1-\left(x^{\prime}\right)^{2}=\left(z^{\prime}\right)^{2}>0$ and $x>0$, this is equivalent to

$$
\frac{-2 x^{\prime} x^{\prime \prime}}{1-\left(x^{\prime}\right)^{2}}=\frac{-2 x^{\prime}}{x}
$$

Integrating this in u, we have
$\log \left(1-\left(x^{\prime}\right)^{2}\right)=\log x^{-2}+$ constant, that is, $\quad 1-\left(x^{\prime}\right)^{2}=\frac{a^{2}}{x^{2}}$,
where a is a constant. Hence we have

$$
x^{\prime}= \pm \sqrt{1-\frac{a^{2}}{x^{2}}}, \quad \text { that is, } \quad d u=\frac{ \pm x d x}{\sqrt{x^{2}-a^{2}}} .
$$

Integrating this, we get $\sqrt{x^{2}-a^{2}}= \pm u+$ constant. By a change of the arclength parameter $u \mapsto \pm u+$ constant, we have

$$
\begin{equation*}
u=\sqrt{x^{2}-a^{2}}, \quad \text { i.e., } \quad x=\sqrt{u^{2}+a^{2}} \tag{2.8}
\end{equation*}
$$

By (2.6) and the assumption $z^{\prime}>0$, we have $z^{\prime}=a / \sqrt{u^{2}+a^{2}}$, and

$$
z=\int \frac{a}{\sqrt{u^{2}+a^{2}}} d u=a \log \left(u+\sqrt{u^{2}+a^{2}}\right)+\text { constant } .
$$

By a translation along the z-axis, we may choose the constant above to be $-a \log a$. Then we have

$$
\begin{equation*}
\left.z=a \log \left(\left(u+\sqrt{u^{2}+a^{2}}\right) / a\right)\right) \tag{2.9}
\end{equation*}
$$

and thus, $\cosh \frac{z}{a}=\frac{1}{a} \sqrt{u^{2}+a^{2}}=\frac{x}{a}$. Therefore, the curve $(x(u), z(u))$ is a catenary, and z^{\prime} does not vanish on whole I.

Otherwise, if $z^{\prime}=0$ on an interval $I, z(u)$ is constant. Thus the corresponding surface is a part of horizontal plane.

Ruled surfaces. Let $\gamma(u)$ be a parametrized space curve, and $\xi(u)$ is a vector valued function such that $\dot{\gamma}(u)$, and $\xi(u)$ are linearly independent for each u. Then a parametrized surface

$$
\begin{equation*}
f(u, v):=\gamma(u)+v \xi(u) \tag{2.10}
\end{equation*}
$$

is called a ruled surface, because it is a locus of moving straight lines. Replacing ξ by $\xi /|\xi|$ and $v|\xi|$ by v, we may assume without loss of generality that $|\xi|=1$. Moreover, if we set
(2.11) $\quad \tilde{\gamma}(u):=\gamma(u)+\tau(u) \xi(u), \quad \tau(u):=\int_{u_{0}}^{u} \dot{\gamma}(t) \cdot \xi(t) d t$,
(2.10) is written as $\tilde{\gamma}(u)+\tilde{v} \xi(u)(\tilde{v}=v-\tau)$, where $\tilde{\gamma}^{\prime} \cdot \xi=0$.

Finally, we can choose u to be the arclength of γ.
Summing up, any ruled surface can be expressed as
(2.12) $f(u, v)=\gamma(u)+v \xi(u)$,

$$
|\xi(u)|=\left|\gamma^{\prime}(u)\right|=1, \quad \gamma^{\prime}(u) \cdot \xi(u)=0
$$

Example 2.6. For $\gamma(u):=(0,0, u)$ and $\xi(u):=(\cos a u, \sin a u, 0)$ ($a>0$ is a constant), the surface (2.10) is minimal, called the helicoid (Figure 2, right).

Theorem 2.7. A minimal ruled surface is congruent to a part of a helicoid or a plane.

Proof. Assume that (2.12) is minimal. Since $\xi \cdot \xi^{\prime}=0$, entries of the first and the second fundamental forms satisfy $F:=f_{u} \cdot f_{v}=$ 0 and $N:=f_{v v} \cdot \nu=0$. Thus, f is minimal if and only if

$$
2{\sqrt{E G-F^{2}}}^{3} H=E N-2 F M+G L=G L=0, \text { i.e. } \quad L=0 .
$$

Since

$$
\left|f_{u} \times f_{v}\right| L=\left(f_{u} \times f_{v}\right) \cdot f_{u u}=\operatorname{det}\left(\gamma^{\prime}+v \xi^{\prime}, \xi, \gamma^{\prime \prime}+v \xi^{\prime \prime}\right)
$$

the condition $H=0$ is equivalent to

$$
\begin{align*}
& \operatorname{det}\left(\gamma^{\prime}, \xi, \gamma^{\prime \prime}\right)=0 \tag{2.13}\\
& \operatorname{det}\left(\xi^{\prime}, \xi, \gamma^{\prime \prime}\right)+\operatorname{det}\left(\gamma^{\prime}, \xi, \xi^{\prime \prime}\right)=0, \tag{2.14}\\
& \operatorname{det}\left(\xi^{\prime}, \xi, \xi^{\prime \prime}\right)=0 \tag{2.15}
\end{align*}
$$

Here, $\left\{\gamma^{\prime}, \xi, \gamma^{\prime} \times \xi\right\}$ forms an orthonormal basis of \mathbb{R}^{3} for each u satisfying the following Frenet-Serret-type formulas:
(2.16) $\gamma^{\prime \prime}=\kappa \xi, \quad \xi^{\prime}=-\kappa \gamma^{\prime}+\tau\left(\gamma^{\prime} \times \xi\right), \quad\left(\gamma^{\prime} \times \xi\right)^{\prime}=-\tau \xi$,
where κ and τ are smooth functions in u. In fact, since $\left|\gamma^{\prime}\right|=1$, $\gamma^{\prime \prime} \cdot \gamma^{\prime}=0$, and (2.13) implies $\gamma^{\prime \prime} \cdot\left(\gamma^{\prime} \times \xi\right)=0$. Thus the first equation follows. Similarly, $\xi^{\prime} \cdot \xi=0$ and $\xi^{\prime} \cdot \gamma^{\prime}=\left(\xi \cdot \gamma^{\prime}\right)^{\prime}-\xi \cdot \gamma^{\prime \prime}=$ $-\xi \cdot \gamma^{\prime \prime}=-\kappa$ yield the second equation. Finally,
$\left(\gamma^{\prime} \times \xi\right)^{\prime} \cdot \gamma^{\prime}=-\left(\gamma^{\prime} \times \xi\right) \cdot \gamma^{\prime \prime}=0, \quad\left(\gamma^{\prime} \times \xi\right)^{\prime} \cdot \xi=-\left(\gamma^{\prime} \times \xi\right) \cdot \xi^{\prime}=-\tau$ imply the third equation.

Differentiating (2.14) with (2.16), we have

$$
\begin{equation*}
\xi^{\prime \prime}=-\kappa^{\prime} \gamma^{\prime}-\left(\kappa^{2}+\tau^{2}\right) \xi+\tau^{\prime}\left(\gamma^{\prime} \times \xi\right) . \tag{2.17}
\end{equation*}
$$

Hence (2.14), $0=\operatorname{det}\left(\gamma^{\prime}, \xi, \xi^{\prime \prime}\right)=\tau^{\prime}$, and then τ is constant. In addition, by (2.15), we have

$$
0=\operatorname{det}\left(\xi^{\prime}, \xi, \xi^{\prime \prime}\right)=\left(-\kappa \tau^{\prime}+\kappa^{\prime} \tau\right)=\operatorname{det}\left(\gamma^{\prime}, \xi, \gamma^{\prime} \times \xi\right)=\kappa^{\prime} \tau
$$

Assume the constant $\tau \neq 0$. Then $\kappa^{\prime}=0$, that is, κ is also constant, and (2.17) turns to be

$$
\begin{equation*}
\xi^{\prime \prime}=-\left(\kappa^{2}+\tau^{2}\right) \xi \tag{2.18}
\end{equation*}
$$

So, if we set $\tilde{\gamma}:=\gamma+\left(\kappa^{2}+\tau^{2}\right) \xi$ and $\tilde{v}=v-\left(\kappa^{2}+\tau^{2}\right)$, we have $f=\tilde{\gamma}+\tilde{v} \xi$ with $\tilde{\gamma}^{\prime \prime}=0$, that is, $\tilde{\gamma}$ is a straight line. Then by an isometry of \mathbb{R}^{3} and a change of parameter u, we can set $\tilde{\gamma}(u)=(0,0, u)$. Since ξ is perpendicular to $\tilde{\gamma}^{\prime}=(0,0,1)$, the image of $\xi(u)$ lies on the unit circle in the $x y$-plane. Hence, by (2.18), up to an isometry and a change of parameters, we have

$$
\xi(u)=(\cos a u, \sin a u, 0), \quad a=\sqrt{\kappa^{2}+\tau^{2}}>0
$$

Then the surface is a helicoid.
On the other hand, when $\tau=0, \gamma^{\prime} \times \xi$ is constant, and we may set $\gamma^{\prime} \times \xi=(0,0,1)$. Since γ^{\prime} and ξ are perpendicular to $(0,0,1), f(u, v)=\gamma(u)+v \xi(u)$ lies on a plane parallel to the $x y$-plane, that is, the image of the surface is part of a plane.

References

[2-1] Bernstein, S. N., Sur une théorme de géometrie et ses applications aux équations dérivées partielles du type elliptique, Comm. Soc. Math. Kharkov 15 38-45. (1915-1917).
[2-2] Osserman, R., A survey of minimal surfaces, Dover Publ.

Exercises

$\mathbf{2 - 1}^{\mathrm{H}}$ Show that the surface $\{(x, y, z) ; \sinh x \sinh y=\sin z\}$ is minimal.

[^0]: 1. July, 2016. Revised: 08. July, 2016
