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2 Classical Examples

Graphs. For a C∞ function φ(x, y) on a domain (or an open
set) D ⊂ R2, its graph is considered as a parametrized surface

(2.1) f : D ∋ (x, y) 7−→
(
x, y, φ(x, y)

)
∈ R3.

The surface (2.1) is minimal if and only if

(2.2) (2δ3H =) (1 + φ2
y)φxx − 2φxφyφxy + (1 + φ2

x)φyy = 0,

where δ =
√

1 + φ2
x + φ2

y. The (nonlinear, elliptic) partial dif-

ferential equation (2.2) is called the minimal surface equation.

Example 2.1. A linear function φ(x, y) = ax + by + c (a, b and
c are constants) satisfies (2.2), and its graph is a plane. It is
known that the entire (i.e., defined on whole R2) solution of
(2.2) is a linear function (Bernstein [2-1], [2-2]).

Example 2.2. The graph of the function

(2.3) φ(x, y) =
1

a
log

cos ay

cos ax
(a > 0 is a constant)

(x, y) ∈
∪

m, n ∈ Z
m + n: even

{
(x, y) ∈ R2

∣∣ |ax − mπ| < π
2 , |ay − nπ| < π

2

}

is a minimal surface, called the Scherk surface (Figure 1). On
the domain {(x, y); |ax| < π/2, |ay| < π/2}, φ is expressed as

φ(x, y) = 1
a log cos ax − 1

a log cos ay.
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Figure 1: the Scherk surface

In general, a graph of a function φ(x, y) = F (x) + G(y) is
called a translation surface.

Theorem 2.3. A translation minimal surface is congruent to
a part of a plane or a part of the Scherk surface.

Proof. For φ(x, y) = F (x) + G(y), (2.2) is equivalent to

(2.4)
F ′′

1 + (F ′)2
= − G̈

1 + (Ġ)2
=: a.

Since the left-hand (resp. middle) side of (2.4) is a function
depending only on x (resp. y), a must be a constant. When
a = 0, (2.4) reduce to F ′′ = 0, G̈ = 0, i.e., φ is a linear function.

Assume a ̸= 0. Without loss of generality, we may assume
that a > 0 Then the first equation in (2.4) yields tan−1 F ′(x) =
ax + c1, where c1 is a constant. By a translation along the x-
axis, we can set c1 = 0, and then F (x) = − 1

a log cos ax + c2,
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Figure 2: The catenoid and the helicoid.

with constant c2. By a translation along the z-axis, we may
set c2 = 0: F (x) = − 1

a log cos ax. Similarly, we have G(y) =
1
a log cos ay.

Surfaces of revolution. We consider a surface of revolution

(2.5) f(u, v) =
(
x(u) cos v, x(u) sin v, z(u)

)
,

γ(u) :=
(
x(u), z(u)

)
: R ⊃ I → R2, x(u) ̸= 0

where γ is a regular curve on the xz-plane, called the profile
curve of the surface of revolution.

Example 2.4. Let γ(u) = (a cosh u
a , u), that is, γ is the graph

x = a cosh z
a on the xz-plane, called the catenary. Then the

surface (2.5) is minimal, called catenoid (Figure. 2, left).
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Theorem 2.5. A minimal surface of revolution is congruent to
a part of the catenoid or the plane.

Proof. We assume that x(u) > 0 and u in (2.5) is the arclength
parameter of γ:

(2.6) (x′)2 + (z′)2 = 1 (′ = d/du) .

Then f is minimal if and only if

(2.7) 2H = x′z′′ − z′x′′ +
z′

x
= 0.

We shall determine
(
x(u), z(u)

)
satisfying (2.7) and (2.6).

Assume
(
x(u), z(u)

)
satisfy these equations and consider the

case that z′ ̸= 0 for some interval I ′. By a reflection about the
x-axis, we may assume z′ > 0 on I ′. Differentiating (2.6), we
have x′x′′ + z′z′′ = 0. Hence, noticing z′ is positive on I ′, (2.7)
is equivalent to

0 = z′
(

x′z′′ − z′x′′ +
z′

x

)
= x′z′z′′ − (z′)2x′ +

(z′)2

x

= −x′x′x′′ −
(
1 − (x′)2

)
x′′ +

1 − (x′)2

x
= x′′ +

1 − (x′)2

x
.

Since 1 − (x′)2 = (z′)2 > 0 and x > 0, this is equivalent to

−2x′x′′

1 − (x′)2
=

−2x′

x
.

Integrating this in u, we have

log
(
1 − (x′)2

)
= log x−2 + constant, that is, 1 − (x′)2 =

a2

x2
,
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where a is a constant. Hence we have

x′ = ±
√

1 − a2

x2
, that is, du =

±x dx√
x2 − a2

.

Integrating this, we get
√

x2 − a2 = ±u+constant. By a change
of the arclength parameter u 7→ ±u + constant, we have

(2.8) u =
√

x2 − a2, i.e., x =
√

u2 + a2.

By (2.6) and the assumption z′ > 0, we have z′ = a/
√

u2 + a2,
and

z =

∫
a√

u2 + a2
du = a log

(
u +

√
u2 + a2

)
+ constant.

By a translation along the z-axis, we may choose the constant
above to be −a log a. Then we have

(2.9) z = a log
(
(u +

√
u2 + a2)/a)

)
,

and thus, cosh z
a = 1

a

√
u2 + a2 = x

a . Therefore, the curve(
x(u), z(u)

)
is a catenary, and z′ does not vanish on whole I.

Otherwise, if z′ = 0 on an interval I, z(u) is constant. Thus
the corresponding surface is a part of horizontal plane.

Ruled surfaces. Let γ(u) be a parametrized space curve, and
ξ(u) is a vector valued function such that γ̇(u), and ξ(u) are
linearly independent for each u. Then a parametrized surface

(2.10) f(u, v) := γ(u) + vξ(u)
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is called a ruled surface, because it is a locus of moving straight
lines. Replacing ξ by ξ/|ξ| and v|ξ| by v, we may assume without
loss of generality that |ξ| = 1. Moreover, if we set

(2.11) γ̃(u) := γ(u) + τ(u)ξ(u), τ(u) :=

∫ u

u0

γ̇(t) · ξ(t) dt,

(2.10) is written as γ̃(u) + ṽξ(u) (ṽ = v − τ), where γ̃′ · ξ = 0.
Finally, we can choose u to be the arclength of γ.

Summing up, any ruled surface can be expressed as

(2.12) f(u, v) = γ(u) + vξ(u),

|ξ(u)| = |γ′(u)| = 1, γ′(u) · ξ(u) = 0.

Example 2.6. For γ(u) := (0, 0, u) and ξ(u) := (cos au, sin au, 0)
(a > 0 is a constant), the surface (2.10) is minimal, called the
helicoid (Figure 2, right).

Theorem 2.7. A minimal ruled surface is congruent to a part
of a helicoid or a plane.

Proof. Assume that (2.12) is minimal. Since ξ ·ξ′ = 0, entries of
the first and the second fundamental forms satisfy F := fu ·fv =
0 and N := fvv · ν = 0. Thus, f is minimal if and only if

2
√

EG − F 2
3
H = EN − 2FM + GL = GL = 0, i.e. L = 0.

Since

|fu × fv|L = (fu × fv) · fuu = det(γ′ + vξ′, ξ, γ′′ + vξ′′),
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the condition H = 0 is equivalent to

det(γ′, ξ, γ′′) = 0,(2.13)

det(ξ′, ξ, γ′′) + det(γ′, ξ, ξ′′) = 0,(2.14)

det(ξ′, ξ, ξ′′) = 0.(2.15)

Here, {γ′, ξ, γ′ × ξ} forms an orthonormal basis of R3 for each
u satisfying the following Frenet-Serret-type formulas:

(2.16) γ′′ = κξ, ξ′ = −κγ′ + τ(γ′ × ξ), (γ′ × ξ)′ = −τξ,

where κ and τ are smooth functions in u. In fact, since |γ′| = 1,
γ′′ · γ′ = 0, and (2.13) implies γ′′ · (γ′ × ξ) = 0. Thus the first
equation follows. Similarly, ξ′ ·ξ = 0 and ξ′ ·γ′ = (ξ ·γ′)′−ξ ·γ′′ =
−ξ · γ′′ = −κ yield the second equation. Finally,

(γ′×ξ)′ ·γ′ = −(γ′×ξ)·γ′′ = 0, (γ′×ξ)′ ·ξ = −(γ′×ξ)·ξ′ = −τ

imply the third equation.
Differentiating (2.14) with (2.16), we have

(2.17) ξ′′ = −κ′γ′ − (κ2 + τ2)ξ + τ ′(γ′ × ξ).

Hence (2.14), 0 = det(γ′, ξ, ξ′′) = τ ′, and then τ is constant. In
addition, by (2.15), we have

0 = det(ξ′, ξ, ξ′′) = (−κτ ′ + κ′τ) = det(γ′, ξ, γ′ × ξ) = κ′τ.

Assume the constant τ ̸= 0. Then κ′ = 0, that is, κ is also
constant, and (2.17) turns to be

(2.18) ξ′′ = −(κ2 + τ2)ξ.
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So, if we set γ̃ := γ + (κ2 + τ2)ξ and ṽ = v − (κ2 + τ2), we
have f = γ̃ + ṽξ with γ̃′′ = 0, that is, γ̃ is a straight line. Then
by an isometry of R3 and a change of parameter u, we can set
γ̃(u) = (0, 0, u). Since ξ is perpendicular to γ̃′ = (0, 0, 1), the
image of ξ(u) lies on the unit circle in the xy-plane. Hence, by
(2.18), up to an isometry and a change of parameters, we have

ξ(u) = (cos au, sin au, 0), a =
√

κ2 + τ2 > 0,

Then the surface is a helicoid.
On the other hand, when τ = 0, γ′ × ξ is constant, and we

may set γ′ × ξ = (0, 0, 1). Since γ′ and ξ are perpendicular to
(0, 0, 1), f(u, v) = γ(u) + vξ(u) lies on a plane parallel to the
xy-plane, that is, the image of the surface is part of a plane.
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Exercises

2-1H Show that the surface {(x, y, z) ; sinh x sinh y = sin z} is
minimal.


