2 Classical Examples

Graphs. For a C^{∞} function $\varphi(x, y)$ on a domain (or an open set) $D \subset \mathbb{R}^2$, its graph is considered as a parametrized surface

(2.1)
$$f: D \ni (x, y) \longmapsto (x, y, \varphi(x, y)) \in \mathbb{R}^3.$$

The surface (2.1) is minimal if and only if

(2.2)
$$(2\delta^3 H =)$$
 $(1+\varphi_y^2)\varphi_{xx} - 2\varphi_x\varphi_y\varphi_{xy} + (1+\varphi_x^2)\varphi_{yy} = 0,$

where $\delta = \sqrt{1 + \varphi_x^2 + \varphi_y^2}$. The (nonlinear, elliptic) partial differential equation (2.2) is called the *minimal surface equation*.

Example 2.1. A linear function $\varphi(x, y) = ax + by + c$ (a, b and c are constants) satisfies (2.2), and its graph is a plane. It is known that the *entire* (i.e., defined on whole \mathbb{R}^2) solution of (2.2) is a linear function (Bernstein [2-1], [2-2]).

Example 2.2. The graph of the function

(2.3)
$$\varphi(x,y) = \frac{1}{a} \log \frac{\cos ay}{\cos ax} \qquad (a > 0 \text{ is a constant})$$
$$(x,y) \in \bigcup_{\substack{m, n \in \mathbb{Z} \\ m+n: \text{ even}}} \left\{ (x,y) \in \mathbb{R}^2 \mid |ax - m\pi| < \frac{\pi}{2} , \ |ay - n\pi| < \frac{\pi}{2} \right\}$$

is a minimal surface, called the *Scherk surface* (Figure 1). On the domain $\{(x, y); |ax| < \pi/2, |ay| < \pi/2\}, \varphi$ is expressed as

$$\varphi(x,y) = \frac{1}{a}\log\cos ax - \frac{1}{a}\log\cos ay.$$

(20160708) 10

Figure 1: the Scherk surface

In general, a graph of a function $\varphi(x, y) = F(x) + G(y)$ is called a *translation surface*.

Theorem 2.3. A translation minimal surface is congruent to a part of a plane or a part of the Scherk surface.

Proof. For $\varphi(x, y) = F(x) + G(y)$, (2.2) is equivalent to

(2.4)
$$\frac{F''}{1+(F')^2} = -\frac{G}{1+(\dot{G})^2} =: a$$

Since the left-hand (resp. middle) side of (2.4) is a function depending only on x (resp. y), a must be a constant. When a = 0, (2.4) reduce to F'' = 0, $\ddot{G} = 0$, i.e., φ is a linear function.

Assume $a \neq 0$. Without loss of generality, we may assume that a > 0 Then the first equation in (2.4) yields $\tan^{-1} F'(x) = ax + c_1$, where c_1 is a constant. By a translation along the x-axis, we can set $c_1 = 0$, and then $F(x) = -\frac{1}{a} \log \cos ax + c_2$,

^{01.} July, 2016. Revised: 08. July, 2016

Figure 2: The catenoid and the helicoid.

Sect. 2

with constant c_2 . By a translation along the z-axis, we may set $c_2 = 0$: $F(x) = -\frac{1}{a} \log \cos ax$. Similarly, we have $G(y) = \frac{1}{a} \log \cos ay$.

Surfaces of revolution. We consider a surface of revolution

(2.5)
$$f(u,v) = (x(u)\cos v, x(u)\sin v, z(u)),$$
$$\gamma(u) := (x(u), z(u)) \colon \mathbb{R} \supset I \to \mathbb{R}^2, \qquad x(u) \neq 0$$

where γ is a regular curve on the *xz*-plane, called the *profile* curve of the surface of revolution.

Example 2.4. Let $\gamma(u) = (a \cosh \frac{u}{a}, u)$, that is, γ is the graph $x = a \cosh \frac{z}{a}$ on the *xz*-plane, called the *catenary*. Then the surface (2.5) is minimal, called *catenoid* (Figure 2, left).

Theorem 2.5. A minimal surface of revolution is congruent to a part of the catenoid or the plane.

Proof. We assume that x(u) > 0 and u in (2.5) is the arclength parameter of γ :

(2.6)
$$(x')^2 + (z')^2 = 1 \qquad (' = d/du).$$

Then f is minimal if and only if

(2.7)
$$2H = x'z'' - z'x'' + \frac{z'}{x} = 0.$$

We shall determine (x(u), z(u)) satisfying (2.7) and (2.6).

Assume (x(u), z(u)) satisfy these equations and consider the case that $z' \neq 0$ for some interval I'. By a reflection about the *x*-axis, we may assume z' > 0 on I'. Differentiating (2.6), we have x'x'' + z'z'' = 0. Hence, noticing z' is positive on I', (2.7) is equivalent to

$$0 = z' \left(x'z'' - z'x'' + \frac{z'}{x} \right) = x'z'z'' - (z')^2 x' + \frac{(z')^2}{x}$$
$$= -x'x'x'' - \left(1 - (x')^2 \right) x'' + \frac{1 - (x')^2}{x} = x'' + \frac{1 - (x')^2}{x}.$$

Since $1 - (x')^2 = (z')^2 > 0$ and x > 0, this is equivalent to

$$\frac{-2x'x''}{1-(x')^2} = \frac{-2x'}{x}.$$

Integrating this in u, we have

$$\log(1 - (x')^2) = \log x^{-2} + \text{constant}, \text{ that is, } 1 - (x')^2 = \frac{a^2}{x^2},$$

where a is a constant. Hence we have

$$x' = \pm \sqrt{1 - \frac{a^2}{x^2}}, \text{ that is, } du = \frac{\pm x \, dx}{\sqrt{x^2 - a^2}}.$$

Integrating this, we get $\sqrt{x^2 - a^2} = \pm u + \text{constant}$. By a change of the arclength parameter $u \mapsto \pm u + \text{constant}$, we have

(2.8)
$$u = \sqrt{x^2 - a^2}$$
, i.e., $x = \sqrt{u^2 + a^2}$.

By (2.6) and the assumption z' > 0, we have $z' = a/\sqrt{u^2 + a^2}$, and

$$z = \int \frac{a}{\sqrt{u^2 + a^2}} \, du = a \log\left(u + \sqrt{u^2 + a^2}\right) + \text{constant.}$$

By a translation along the z-axis, we may choose the constant above to be $-a \log a$. Then we have

(2.9)
$$z = a \log((u + \sqrt{u^2 + a^2})/a)),$$

and thus, $\cosh \frac{z}{a} = \frac{1}{a}\sqrt{u^2 + a^2} = \frac{x}{a}$. Therefore, the curve (x(u), z(u)) is a catenary, and z' does not vanish on whole I.

Otherwise, if z' = 0 on an interval I, z(u) is constant. Thus the corresponding surface is a part of horizontal plane.

Ruled surfaces. Let $\gamma(u)$ be a parametrized space curve, and $\xi(u)$ is a vector valued function such that $\dot{\gamma}(u)$, and $\xi(u)$ are linearly independent for each u. Then a parametrized surface

(2.10)
$$f(u,v) := \gamma(u) + v\xi(u)$$

Sect. 2

is called a *ruled surface*, because it is a locus of moving straight lines. Replacing ξ by $\xi/|\xi|$ and $v|\xi|$ by v, we may assume without loss of generality that $|\xi| = 1$. Moreover, if we set

(2.11)
$$\tilde{\gamma}(u) := \gamma(u) + \tau(u)\xi(u), \quad \tau(u) := \int_{u_0}^u \dot{\gamma}(t) \cdot \xi(t) dt,$$

(2.10) is written as $\tilde{\gamma}(u) + \tilde{v}\xi(u)$ ($\tilde{v} = v - \tau$), where $\tilde{\gamma}' \cdot \xi = 0$. Finally, we can choose u to be the arclength of γ .

Summing up, any ruled surface can be expressed as

(2.12)
$$f(u,v) = \gamma(u) + v\xi(u),$$

 $|\xi(u)| = |\gamma'(u)| = 1, \quad \gamma'(u) \cdot \xi(u) = 0.$

Example 2.6. For $\gamma(u) := (0, 0, u)$ and $\xi(u) := (\cos au, \sin au, 0)$ (a > 0 is a constant), the surface (2.10) is minimal, called the *helicoid* (Figure 2, right).

Theorem 2.7. A minimal ruled surface is congruent to a part of a helicoid or a plane.

Proof. Assume that (2.12) is minimal. Since $\xi \cdot \xi' = 0$, entries of the first and the second fundamental forms satisfy $F := f_u \cdot f_v = 0$ and $N := f_{vv} \cdot v = 0$. Thus, f is minimal if and only if

$$2\sqrt{EG-F^2}^3H = EN - 2FM + GL = GL = 0$$
, i.e. $L = 0$.

Since

$$|f_u \times f_v| L = (f_u \times f_v) \cdot f_{uu} = \det(\gamma' + v\xi', \xi, \gamma'' + v\xi''),$$

Sect. 2

the condition H = 0 is equivalent to

- (2.13) $\det(\gamma', \xi, \gamma'') = 0,$
- (2.14) $\det(\xi',\xi,\gamma'') + \det(\gamma',\xi,\xi'') = 0,$
- (2.15) $\det(\xi',\xi,\xi'') = 0.$

Here, $\{\gamma', \xi, \gamma' \times \xi\}$ forms an orthonormal basis of \mathbb{R}^3 for each u satisfying the following Frenet-Serret-type formulas:

(2.16)
$$\gamma'' = \kappa \xi, \quad \xi' = -\kappa \gamma' + \tau (\gamma' \times \xi), \quad (\gamma' \times \xi)' = -\tau \xi,$$

where κ and τ are smooth functions in u. In fact, since $|\gamma'| = 1$, $\gamma'' \cdot \gamma' = 0$, and (2.13) implies $\gamma'' \cdot (\gamma' \times \xi) = 0$. Thus the first equation follows. Similarly, $\xi' \cdot \xi = 0$ and $\xi' \cdot \gamma' = (\xi \cdot \gamma')' - \xi \cdot \gamma'' = -\xi \cdot \gamma'' = -\kappa$ yield the second equation. Finally,

$$(\gamma' \times \xi)' \cdot \gamma' = -(\gamma' \times \xi) \cdot \gamma'' = 0, \quad (\gamma' \times \xi)' \cdot \xi = -(\gamma' \times \xi) \cdot \xi' = -\tau$$

imply the third equation.

Differentiating (2.14) with (2.16), we have

(2.17)
$$\xi'' = -\kappa'\gamma' - (\kappa^2 + \tau^2)\xi + \tau'(\gamma' \times \xi)$$

Hence (2.14), $0 = \det(\gamma', \xi, \xi'') = \tau'$, and then τ is constant. In addition, by (2.15), we have

$$0 = \det(\xi', \xi, \xi'') = (-\kappa\tau' + \kappa'\tau) = \det(\gamma', \xi, \gamma' \times \xi) = \kappa'\tau.$$

Assume the constant $\tau \neq 0$. Then $\kappa' = 0$, that is, κ is also constant, and (2.17) turns to be

(2.18)
$$\xi'' = -(\kappa^2 + \tau^2)\xi.$$

So, if we set $\tilde{\gamma} := \gamma + (\kappa^2 + \tau^2)\xi$ and $\tilde{v} = v - (\kappa^2 + \tau^2)$, we have $f = \tilde{\gamma} + \tilde{v}\xi$ with $\tilde{\gamma}'' = 0$, that is, $\tilde{\gamma}$ is a straight line. Then by an isometry of \mathbb{R}^3 and a change of parameter u, we can set $\tilde{\gamma}(u) = (0, 0, u)$. Since ξ is perpendicular to $\tilde{\gamma}' = (0, 0, 1)$, the image of $\xi(u)$ lies on the unit circle in the *xy*-plane. Hence, by (2.18), up to an isometry and a change of parameters, we have

$$\xi(u) = (\cos au, \sin au, 0), \qquad a = \sqrt{\kappa^2 + \tau^2} > 0,$$

Then the surface is a helicoid.

On the other hand, when $\tau = 0$, $\gamma' \times \xi$ is constant, and we may set $\gamma' \times \xi = (0, 0, 1)$. Since γ' and ξ are perpendicular to (0, 0, 1), $f(u, v) = \gamma(u) + v\xi(u)$ lies on a plane parallel to the *xy*-plane, that is, the image of the surface is part of a plane. \Box

References

- [2-1] Bernstein, S. N., Sur une théorme de géometrie et ses applications aux équations dérivées partielles du type elliptique, Comm. Soc. Math. Kharkov 15 38–45. (1915–1917).
- [2-2] Osserman, R., A SURVEY OF MINIMAL SURFACES, Dover Publ.

Exercises

2-1^H Show that the surface $\{(x, y, z); \sinh x \sinh y = \sin z\}$ is minimal.