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2 Classical Examples

Graphs. For a C function ¢(z,y) on a domain (or an open
set) D C R?, its graph is considered as a parametrized surface

(2.1) f:D >3 (z,y) — (z,y,0(z,y)) € R3.

The surface (2.1) is minimal if and only if
(2.2) (20°H =) (14 02) 00 — 2020y Puy + (1 + ©2)pyy =0,

where 0 = /1 + ¢2 + 2. The (nonlinear, elliptic) partial dif-
ferential equation (2.2) is called the minimal surface equation.

Ezample 2.1. A linear function p(z,y) = ax + by + ¢ (a, b and
¢ are constants) satisfies (2.2), and its graph is a plane. It is

known that the entire (i.e., defined on whole R?) solution of
(2.2) is a linear function (Bernstein [2-1], [2-2]).

Ezxample 2.2. The graph of the function

1 cos ay
(2.3) ¢(z,y) = —log

a cos ax
(z,y) € U {(x,y) e R? ||ax—m7r| <%, lay —nn| < g}

m,n €%
m 4+ n: even

(a > 0 is a constant)

is a minimal surface, called the Scherk surface (Figure 1). On
the domain {(z,y);|az| < 7/2, |ay| < 7©/2}, ¢ is expressed as

o(z,y) = Llogcosar — L logcosay.
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Figure 1: the Scherk surface

In general, a graph of a function ¢(z,y) = F(z) + G(y) is
called a translation surface.

Theorem 2.3. A translation minimal surface is congruent to
a part of a plane or a part of the Scherk surface.

Proof. For ¢(x,y) = F(z) + G(y), (2.2) is equivalent to

F" G
24 TR e

Since the left-hand (resp. middle) side of (2.4) is a function
depending only on = (resp. y), a must be a constant. When
a =0, (2.4) reduce to F”" =0, G = 0, i.e., ¢ is a linear function.

Assume a # 0. Without loss of generality, we may assume
that a > 0 Then the first equation in (2.4) yields tan=! F'(z) =
ax + c1, where c¢; is a constant. By a translation along the -
axis, we can set ¢; = 0, and then F(z) = —% log cosax + ca,
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Figure 2: The catenoid and the helicoid.

with constant c;. By a translation along the z-axis, we may
set c; = 0: F(z) = —llogcosaz. Similarly, we have G(y) =
% log cos ay. O

Surfaces of revolution. We consider a surface of revolution

(2.5)  f(u,v) = (x(u) cosv, z(u) sinv, z(u)),

Y(u) = (z(u),2z(u)): R DI — R?, x(u) #0
where 7 is a regular curve on the xzz-plane, called the profile
curve of the surface of revolution.

Ezample 2.4. Let v(u) = (acosh ¥, u), that is, v is the graph
x = acosh £ on the wz-plane, called the catenary. Then the
surface (2.5) is minimal, called catenoid (Figure. 2, left).
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Theorem 2.5. A minimal surface of revolution is congruent to
a part of the catenoid or the plane.

Proof. We assume that x(u) > 0 and w in (2.5) is the arclength
parameter of ~:

(2.6) @2+ ()2 =1 (" =d/du).

Then f is minimal if and only if

/

(2.7) OH —2/2" — 22" + z —0.
X

We shall determine (x(u), z(u)) satisfying (2.7) and (2.6).
Assume (z(u), z(u)) satisfy these equations and consider the
case that 2’ # 0 for some interval I’. By a reflection about the
z-axis, we may assume 2z’ > 0 on I’. Differentiating (2.6), we
have ’'z” + 2’2" = 0. Hence, noticing 2’ is positive on I’, (2.7)

is equivalent to

0=2 (xlzll — "+ Z_,> — gl (Z’)2JJ’ + (z’)2
T

T
1— N2 1— N2
:_x/x/x//_(l_(x/)2)$//+ () - () )
T T
Since 1 — (2/)%? = (2')? > 0 and x > 0, this is equivalent to
—22'x" -2
1— (2?2 =«

Integrating this in u, we have

log(1 — (2)?) = logz~? + constant, that is, 1—(2')’ = —
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where a is a constant. Hence we have

a? +z dx
' =4+4/1—-—, thatis, du= ————.
x Vo2 — a2

2 )
Integrating this, we get V&2 — a? = +u+constant. By a change
of the arclength parameter u — 4u + constant, we have

(2.8) u=+va?—a? e, x=+Vu?+ad%

By (2.6) and the assumption 2z’ > 0, we have 2’ = a/vu? + a2,
and

a
2= | —=du=alo (u +Vu? + a2> + constant.
/ Vu? 4 a? .
By a translation along the z-axis, we may choose the constant
above to be —aloga. Then we have

(2.9) z = alog((u+ Vu?+a?)/a)),

and thus, cosh 2 = %\/ u?2+a? = Z. Therefore, the curve

(z(u), 2(u)) is a catenary, and 2’ does not vanish on whole I.
Otherwise, if 2’ = 0 on an interval I, z(u) is constant. Thus

the corresponding surface is a part of horizontal plane. O

Ruled surfaces. Let y(u) be a parametrized space curve, and
&(u) is a vector valued function such that 4(u), and &(u) are
linearly independent for each u. Then a parametrized surface

(2.10) fu,v) = (u) + vg(u)
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is called a ruled surface, because it is a locus of moving straight
lines. Replacing & by £/|¢] and v|€| by v, we may assume without
loss of generality that |{] = 1. Moreover, if we set

Q1) ()= ) +rlg), 7= [ 50 g0

0

(2.10) is written as §(u) + 9&(u) (0 = v — 7), where 4" - € = 0.
Finally, we can choose u to be the arclength of ~.
Summing up, any ruled surface can be expressed as

(212)  f(u,v) = v(u) + v&(u),
)l =1 (w]=1, +'(u) &) =0.

Ezample 2.6. For v(u) := (0,0,u) and &(u) := (cos au, sin au, 0)
(a > 0 is a constant), the surface (2.10) is minimal, called the
helicoid (Figure 2, right).

Theorem 2.7. A minimal ruled surface is congruent to a part
of a helicoid or a plane.

Proof. Assume that (2.12) is minimal. Since £-&' = 0, entries of
the first and the second fundamental forms satisfy F' := f, - f, =
0 and N := f,, - v = 0. Thus, f is minimal if and only if

3
2/ EG—-F?2 H=FEN —2FM +GL=GL =0, i.e. L=0.
Since

[fu x folL = (fu x fo) - fuu = det(y +0€,&9" + "),
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the condition H = 0 is equivalent to

(2.13) det(v,&,7") =0,
(2.14) det(&',€,7") + det(v',£,€") =0,
(2.15) det(¢',€,¢") = 0.

Here, {7,&,7" x ¢} forms an orthonormal basis of R? for each
u satisfying the following Frenet-Serret-type formulas:

(2.16) 7" =rE, & =—-ry+7(v xE), (v x§ =-7¢

where x and 7 are smooth functions in w. In fact, since |y/| = 1,
4"~ =0, and (2.13) implies v’ - (7' x &) = 0. Thus the first
equation follows. Similarly, - = 0and &'y = (£9) —&+" =
—¢ - +" = —k yield the second equation. Finally,

(V%€ =—=(x&"=0, (Vx8"-&=—-(vx€)-&=—-1

imply the third equation.
Differentiating (2.14) with (2.16), we have

(2.17) ¢ ==y = (K + )5+ 7( x ).

Hence (2.14), 0 = det(v/,&,£"”) = 7/, and then 7 is constant. In
addition, by (2.15), we have

0= det(€/5 57 5//)

Assume the constant 7 # 0. Then &' = 0, that is, & is also
constant, and (2.17) turns to be

(2.18) ¢ = —(k* +T)E

(kT + K'7) = det(v/,&,7 x &) = K'T.
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So, if we set 7 := v+ (k2 + 72)€ and ¥ = v — (k% + 72), we
have f =4 + 9€ with 4” = 0, that is, 7 is a straight line. Then
by an isometry of R? and a change of parameter u, we can set
A(u) = (0,0,u). Since & is perpendicular to 4’ = (0,0, 1), the
image of &(u) lies on the unit circle in the zy-plane. Hence, by
(2.18), up to an isometry and a change of parameters, we have

&(u) = (cos au, sin au, 0), a=+vVk?>+712>0,

Then the surface is a helicoid.

On the other hand, when 7 = 0, 7' x £ is constant, and we
may set 7' x & = (0,0,1). Since 7' and £ are perpendicular to
(0,0,1), f(u,v) = vy(u) + v&(u) lies on a plane parallel to the
xy-plane, that is, the image of the surface is part of a plane. [J
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2-1% Show that the surface {(z,v,2); sinhxsinhy = sinz} is
minimal.



