1 Area minimizing surfaces

1.1 A review of surface theory.

Let D C R? be a domain in the uv-plane and f: D — R? an
immersion. We often refer to such an immersion as a surface.
Then the unit normal vector of f is given by (with +-ambiguity)

(1.1) 1/::M:D—)SZZ{:BER3||:B|=1}CR3,

where “x” denotes the vector product of R3. The first and the
second fundamental forms are defined as
ds?> = df - df = Edu® + 2F dudv + G dv?,

(1.2) ) )
I = —df -dv = Ldu*+2M dudv + N dv*,

where “” denotes the canonical inner product of R3. Here,
E:=fu fu F:=fufo="Ffu fu G:=fo fo,
L:i=—fo vy, M:=—fy-vy=—fy, vy N:i=—f,-1,
= fuu -V, = fuv "V, = fou 'V
are called the entries of the first and the second fundamental

forms with respect to the parameters (u,v). The area of the
image of a compact region {2 C D is computed as

(13)  A@Q) = //QdA://Q|fu><fU|dudv,
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where dA = |f, X fu|dudv=v EG — F? dudv is said to be the
area element of the surface.
The derivatives of v is written as (the Weingarten Formula)

(1-4> Uy = _A%fu_A%fva Uy = _A%fu_Agfva
A_:A%AngF“LM
' A2 A2 F G M N)°
The matrix A is called the Weingarten matriz, and the determi-
nant K and the half H of the trace of A are called the Gaussian
curvature and the mean curvature, respectively:
LN — M? 1 Al + A3

15) Ki=detA=—"— """ H.——trA=
(1.5) ¢ EG—F2° PR 2

1.2 Area minimizing surfaces.
The purpose of this section is to show the following fact:

For a given simple closed curve C' in R3, the surface
which minimizing area among all surfaces bounded
by C' is a surface whose mean curvature vanishes
identically.

Setting up. As the description of the above fact is rather
intuituive, we will formulate the problem.
Let C be a simple closed smooth curve in R3 and set

(1.6) S - {f’ D R3- f is a C°°-immersion }
. C = : ; ,

foD) =C
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where D (resp. D) is the open (resp. closed) unit disc and 9D
is its boundary:!

(1.7) D:=DuUaD, {(u,v) € R?; w? +0? < 1},
{(u,v) € R*; w? +0? =1}
{

(cosf,sinf); 6 € R}.

D :
oD :

Roughly speaking, S¢ is “the set of the surfaces bounded by
C”. Then we set the area functional as

(1.8) A:Scaf»—>A(f)://ﬁ|fuva\dudv.

Using these notations, our result can be stated as the following:

Theorem 1.1. If a surface f € S¢ attains the minimum of the
area functional A, the mean curvature of f vanishes identically.

Taking this fact into account, we define

Definition 1.2. A surface whose mean curvature vanishes iden-
tically is said to be minimal.

Remark 1.3. As Theorem 1.1 is a necessary condition for the
minimizer, a minimal surface is not necessarily a minimizer of
the area functional.

A map f defined on D is said to be C'°° if there exists a open set D
containing D and a C°° map f defined on D such that f|5 = f.
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Variations of surfaces. To show Theorem 1.1, we want to
“differentiate” the functional A.

Definition 1.4. For a surface f € S¢, a variation (fixing the
boundary) of f is a C°°-map

F: D x (—¢,€) 2 (u,v;t) —> fH(u,v) := F(u,v;t) € R?

such that fO = f and f* € S¢ for each t € (—¢,¢), where ¢ is a
positive number. The vector-valued function

(1.9) V(u,v) = % B fH(u,v)

is called the variational vector field of the variation F.

Lemma 1.5. For a variation F = {f} of f € S. with varia-
tional vector field V', it holds that

d
@f(cos 0,sin ) x V(cosf,sinf) = 0.

Proof. Since (cos6,sinf) is a parametrization of D, ~*(6) :=
ft(cosf,sin @) € C for all t and §. Thus, two vectors in the left-
hand side of the first assertion are both tangent to C, proving
the lemma. O

The first variation formula.

Theorem 1.6. Let F = {f'} be a variation of f € Sc¢ with
variational vector field V.. Then it holds that

(1.10) 4 A(ft):—2//§H(V-y) dA,

dt

t=0
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where H, v and dA are the mean curvature, the unit normal
vector and the area element of f, respectively.

Proof. By the definition of the area (1.3), we have
d

A(ff) =

t= 0

:// ot

:// (Vi X fo 4 fu X Vi) - (fu X fo)
D | fu % fol

// w X fo+ fuxVy) - vdudy
// Vi X fo) v+ (fu x Vi) - v) dudo.

Here, by the formula of scalar triple product

(%) : / IfE < fE| dudv

|fL x ft|dudv
=0

du dv

(axb)-c=(bxc)-a=(cxa) -b=det(a,b,c),

we have

// (vx fo) Vu+ (fuxv) V) dudv

// (% 1) V), + ((fu % v) V)] dudo,
://5 (vx fo), V) + (fuxv), -V))] dudo.
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By the Green-Stokes formula, (I) is computed as

// (wx £,) V), — (v x ) -V),] dudo,
7/@ ((fudut fodv) x V)

= / v- (ddaf(cosﬁ sin f) x V(cos#, sin 9)) df = 0.

—T

Here, the last assertion is obtained by Lemma 1.5. On the other
hand, using the Weingarten formula (1.4), (II) is computed as

://5[(uuva)~V+(u><fw)-V

+(fuw X V) -V 4 (fu x 1) - V] dudv

://5[(% X L) V4 (fu x ) - V] dudv
- [ (s + 4y < £)-v

+(fu (Aqu +A f’u)) ] dudv
_/f(A% + Ag)(fu X fy) - Vdudv
D

— 2H(v - V)| fu X foldudv O
J[ 20 viin<

Proof of Theorem 1.1. We need the following “the funda-
mental lemma for calculus of variations”.
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Lemma 1.7. Assume a smooth function h: D — R satisifes

/Lh(u,v)go(u, v)dudv =0
D
for all C*°-function with p|lsp = 0. Then h =0 on D.

Proof. Assume h(ug,vg) > 0 (resp. < 0)((uog,v9) € D). By a
continuity, there exists € > 0 such that h(u,v) > — on an e-ball
B := B.(ug,vg) centered at (ug,vg). Let ¢ be a non-negative
C*>-function on D such that ¢ > 0 on B and 0 on D\ B. Then

/thodudvz// hedudv >0 (resp. < 0),
D B

a contradiction. O

Proof of Theorem 1.6. Assume f € S¢ minimizes the area. Then
for any variation F = {f*} of f, A(f*) is not less than A(f) =
A(f°). Then by Theorem 1.6, it holds that

d
0=a

A = —2/5H(V~u)|fu % fol du dv.

t=0

Let ¢ be a C*°-function on D with p|sp = 0. Then f! := f+tpv
is a variation of f with variational vector field V = ¢v. Thus,

J[ it e =0

Since ¢ is arbitrary, Lemma 1.7 yields the conclusion. O
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FEzxercises

1-1" For P, Q € R?, set

~ is a regular curve
Cp.q :=147: [0,1] — R?; ,
{ 7(0) =P, (1) =Q

and denote by L the length functional:

A variation of a curve v € Cp q is a C°°-map
I:[0,1] x (—¢,€) = ~'(s) = I'(s,t) € R?

such that 7' € Cp q for each t € (—¢,¢) and 7° = 7.

Then show the first variation formula for the length func-

tional

d 1 YT — Ty

_ £7t :7/ Vhds, h:1.7*2)@>
7 cen==[wm i)

where V' is the variational vector field of the variation {7'}
of the curve v(s) = (z(s), y(s)).
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2 Classical Examples

Graphs. For a C* function ¢(z,y) on a domain (or an open
set) D C R?, its graph is considered as a parametrized surface

(2.1) f:D >3 (z,y) — (z,y,0(z,y)) € R

The surface (2.1) is minimal if and only if
(2.2) (263H =) (1+ 90;)909093 — 2000y Pay + (1+ (P?:)‘Pyy =0,

where § = /14 ¢2 + ¢2. The (nonlinear, elliptic) partial dif-
ferential equation (2.2) is called the minimal surface equation.

Ezample 2.1. A linear function ¢(z,y) = ax + by + ¢ (a, b and
¢ are constants) satisfies (2.2), and its graph is a plane. It is
known that the entire (i.e., defined on whole R?) solution of
(2.2) is a linear function (Bernstein [2-1], [2-2]).

FEzample 2.2. The graph of the function

1 y
(2.3) ¢(z,y) = —log o8y (a > 0 is a constant)
a °cosax
(x,y) € U {(z,y) e R® ||az —m7| <, |ay — nw| < 5}
m,n €Z

m + n: even

is a minimal surface, called the Scherk surface (Figure 1). On
the domain {(z,y); lax| < 7/2, |ay| < 7/2}, ¢ is expressed as

p(z,y) = %logcos ar — %logcos ay.
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Figure 1: the Scherk surface

In general, a graph of a function ¢(z,y) = F(x) + G(y) is
called a translation surface.

Theorem 2.3. A translation minimal surface is congruent to
a part of a plane or a part of the Scherk surface.

Proof. For p(x,y) = F(z) + G(y), (2.2) is equivalent to

F G
24 VO ATAEA

Since the left-hand (resp. middle) side of (2.4) is a function
depending only on z (resp. y), a must be a constant. When
a =0, (2.4) reduce to F” =0, G = 0, i.e., ¢ is a linear function.

Assume a # 0. Without loss of generality, we may assume
that a > 0 Then the first equation in (2.4) yields tan=! F'(x) =
ax + c1, where ¢; is a constant. By a translation along the z-
axis, we can set ¢; = 0, and then F(x) = 72 log cos ax + c3,

01. July, 2016. Revised: 08. July, 2016
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Figure 2: The catenoid and the helicoid.

with constant cp. By a translation along the z-axis, we may
set 3 = 0: F(z) = —llogcosaz. Similarly, we have G(y) =
% log cos ay. O

Surfaces of revolution. We consider a surface of revolution

(2.5)  f(u,v) = (x(u) cosv, z(u) sinv, z(u)),

Y(u) = (z(u),z(u)): R DI — R? x(u) #0
where v is a regular curve on the zz-plane, called the profile
curve of the surface of revolution.

Example 2.4. Let v(u) = (acosh ,u), that is, v is the graph
x = acoshZ on the wz-plane, called the catenary. Then the
surface (2.5) is minimal, called catenoid (Figure. 2, left).
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Theorem 2.5. A minimal surface of revolution is congruent to
a part of the catenoid or the plane.

Proof. We assume that z(u) > 0 and v in (2.5) is the arclength
parameter of 7:

(2.6) (') + () =1 (" =d/du).

Then f is minimal if and only if

/

(2.7> OH = 2'2" — /2" + z -0
X

We shall determine (z(u), z(u)) satisfying (2.7) and (2.6).
Assume (a:(u), z(u)) satisfy these equations and consider the
case that 2’ # 0 for some interval I’. By a reflection about the
z-axis, we may assume 2z’ > 0 on I'. Differentiating (2.6), we
have 2’2" + 2’2" = 0. Hence, noticing 2z’ is positive on I’, (2.7)

is equivalent to

0= Z/ <xlzl/ _ le// + Zl) _ 1‘/2’/2’” _ (21)21_/ =+ (Z/)2
ZT T

1— N2 1— n2
— a2 — (1 _ (I/)2)1‘H + iI ) =2+ 3(31' ) )

Since 1 — (/)% = (2/)? > 0 and = > 0, this is equivalent to

—2z' 2" —27'

1— (22 =z

Integrating this in u, we have

log(1 — (2)*) =logz~* + constant, that is, 1— (z/)* = —,
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where a is a constant. Hence we have

2
;o / a . =
r =+ 1—?, that 1S, dU—ﬁ

Integrating this, we get vx2 — a2 = +u+constant. By a change
of the arclength parameter u — +u + constant, we have

(2.8) u=+vaz—a? ie, x=+u?+da2

By (2.6) and the assumption 2z’ > 0, we have z’ = a/vu? + a2,
and

a
2= | ———=du=ualog (u + vVu? + az) + constant.
/ Vu? + a?
By a translation along the z-axis, we may choose the constant
above to be —aloga. Then we have

(2.9) z= alog((u +vVuz+ a2)/a)),

and thus, coshZ = %\/ u?+a? = Z. Therefore, the curve

(z(u), z(u)) is a catenary, and 2’ does not vanish on whole I.
Otherwise, if 2/ = 0 on an interval I, z(u) is constant. Thus

the corresponding surface is a part of horizontal plane. O

Ruled surfaces. Let y(u) be a parametrized space curve, and
&(u) is a vector valued function such that 4(u), and &(u) are
linearly independent for each u. Then a parametrized surface

(2.10) fu,v) = y(u) + vg(u)
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is called a ruled surface, because it is a locus of moving straight
lines. Replacing & by £/[£| and v[€| by v, we may assume without
loss of generality that |£| = 1. Moreover, if we set

u

211 A(w) = y(u) + T(w)é(u), 7(u) ::/ y(t) - &(t) dt,

0

(2.10) is written as J(u) + 0&(u) (0 = v — 7), where 7' - £ = 0.
Finally, we can choose u to be the arclength of ~.
Summing up, any ruled surface can be expressed as

(2.12)  f(u,v) = y(u) + v€(u),
=1 (W)]=1, 7'(u)-&u)=0.

Ezample 2.6. For v(u) := (0,0, u) and &(u) := (cos au, sin au, 0)
(a > 0 is a constant), the surface (2.10) is minimal, called the
helicoid (Figure 2, right).

Theorem 2.7. A minimal ruled surface is congruent to a part
of a helicoid or a plane.

Proof. Assume that (2.12) is minimal. Since £-£’ = 0, entries of
the first and the second fundamental forms satisfy F' := f,,- f, =
0 and N := f,, - v = 0. Thus, f is minimal if and only if

3
2VEG—-F2 H=FEN —-2FM+GL=GL=0, ie. L=0.
Since

|fu X fU|L = (fu X fU) : fuu = det(’y’ + v§/a€7’)// + Uﬁ”),
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the condition H = 0 is equivalent to

(2.13) det(7/,&,7") =0,
(2.14) det(¢',€,7") + det(v/,£,£") =0,
(2.15) det(¢',¢€,¢") = 0.

Here, {7/,&,7 x £} forms an orthonormal basis of R? for each
u satisfying the following Frenet-Serret-type formulas:

(216) 7" =rE, & =—ry+7(7 %), (V' x& =-7¢

where k and 7 are smooth functions in u. In fact, since |y/| = 1,
7" -4" =0, and (2.13) implies 7" - (7 x &) = 0. Thus the first
equation follows. Similarly, - = 0and &'y = (£-4') —&-+" =
—&-~" = —k yield the second equation. Finally,

(V)& 'y =—=(x€"=0, (Vx&-&=—-(vx£)-&=—-1

imply the third equation.
Differentiating (2.14) with (2.16), we have

(2.17) "= k'Y = (K +1)E+1'(7 x€).

Hence (2.14), 0 = det(v/,&£,£”) = 7/, and then 7 is constant. In
addition, by (2.15), we have

0=det(¢,&,&8") = (—rt" + K'T) = det(y',£,7 x &) = /1.

Assume the constant 7 # 0. Then ' = 0, that is, x is also
constant, and (2.17) turns to be

(2.18) ¢ = —(k?+12)E
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So, if we set ¥ := v+ (k2 + 73)¢ and ¥ = v — (k2 + 72), we
have f =4 4 0¢ with 4” = 0, that is, 4 is a straight line. Then
by an isometry of R? and a change of parameter u, we can set
A(u) = (0,0,u). Since ¢ is perpendicular to 4/ = (0,0,1), the
image of {(u) lies on the unit circle in the zy-plane. Hence, by
(2.18), up to an isometry and a change of parameters, we have

&(u) = (cos au, sin au, 0), a=+vVkK2+712>0,

Then the surface is a helicoid.

On the other hand, when 7 = 0, 7/ x £ is constant, and we
may set 7' x £ = (0,0,1). Since v and £ are perpendicular to
(0,0,1), f(u,v) = y(u) + v€(u) lies on a plane parallel to the
zy-plane, that is, the image of the surface is part of a plane. [
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3 Isothermal Coordinates

A Review of Complex Analysis. Let C be the complex
plane. A Cl-function?f: C > D € z — w = f(z) € C defined
on a domain D is said to be holomorphic if the derivative

f/(Z) — }lli% f(z + h]?L B f(Z)

exists for all z € D.

Fact 3.1 (The Cauchy-Riemann equation). A function f: C >
D — C is holomorphic if and only if

Ou  0Ov J ou ov

oc “on " e e
holds on D, where w = f(2), z=&+1in, w=u+iv (i = V/—1).

(3.1)

For functions of complex variable z = £ + in, we set

g2 2.1(2_ 9y 9 _1(9 .9
' 9. 2\oc ‘'on) o9z 2\oc "'on)-

Corollary 3.2. For a complex function f, (3.1) is equivalent to

of _
0z
Proof. Setting w = f(z) = u+iv and z = £ +in. Then the real
(resp. imaginary) part of the left-hand side of (3.3) coincides
with the first (resp. second) equation of (3.1). O

08. July, 2016. Revised: 05. July, 2016
20f class C! as a map from D C R? to R2.

(3.3) 0.
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Definition 3.3. A real-valued function ¢: R? D U — R is said
to be harmonic if it satisfies the Laplace equation

Ap = pee + @y = 0.

Lemma 3.4. If a function ¢: C D D — R is harmonic, dp/0z
s a holomorphic function on D, where z is a complex coordinate

of C.
Proof. Corollary 3.2 yields the conclusion since

00p e 1
220- 9502 1°¥ -

Isothermal Coordinates.

Definition 3.5. Let f: M? — R? be an immersion of 2-manifold,
and ds? its first fundamental form. A local coordinate chart
(U; (u, v)) of M? is called an isothermal coordinate system or a
conformal coordinate system if ds® is written in the form?

ds* = %7 (du® + dv?), o=o(u,v) € C®(U).

Example 3.6. A parametrization of the catenoid in Example 2.4
is isothermal if ¢ = 1. In fact, the first fundamental form is
expressed as cosh?(u/a)(du? + a?dv?).

3The notion of the isothermal coordinate system can be defined not only
for surfaces but also for Riemannian 2-manifolds, that is, differentiable 2-
manifolds M2 with Riemannian metrics ds? (the first fundamental forms).
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Definition 3.7. Two charts (Uj; (uj,v;)) (j = 1,2) of a 2-

manifold M? has the same (resp. opposite) orientation if the Ja-
8('&2,1}2)
8(u1 ,vl)

M? is said to be oriented if there exists an atlas { (Uj; (u;,v;)) }
such that all charts have the same orientations. A choice of such
an atlas is called an orientation of M?2.

cobian is positive (resp. negative) on UyNUs;. A manifold

Proposition 3.8. Let (u,v) be an isothermal coordinate sys-
tem of a surface. Then another coordinate system (£,m) is also
isothermal if and only if the parameter change (£,m) — (u,v)
satisfy

ou ov ou ov

i N T 2
where e = 1 (resp. —1) if (u,v) and (§,m) has the same (resp.
the opposite) orientation.

Proof. If we write ds? = €27 (du® + dv?), it holds that
ds? = e?° ((ug + vg) d€? + 2(ugv,, + u,ve) dé dn+ (u?7 + vg) dn?).

(3.4)

Thus, (£,n) is isothermal if and only if
(3.5) u? + U? = ug + v,%, (ugvy + uyve) = 0.

The second equality yields (vg, v,) = e(—uy, u¢) for some func-
tion e. Substituting this into the first equation of (3.5), we get
e = x1. Moreover,

0(u,v) us u U u
~ =d T)=det | S ) =e(ui+ud).
(&) a(% o) =0 e, cug) =l )

Thus, the conclusion follows. O
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Corollary 3.9. Let (u,v) is an isothermal coordinate system.
Then a coordinate system (£,n) is isothermal and has the same
orientation as (u,v) if and only if the map & + in — u + v
(i = /=1) is holomorphic.

Proof. Equations 3.4 for ¢ = +1 are nothing but the Cauchy-
Riemann equations (3.1). O

Fact 3.10 (Section 15 in [3-1]). Let (M?,ds?) be an arbitrary
Riemannian manifold. Then for each p € M?, there exists an
isothermal chart containing p.

Corollary 3.11. Any oriented Riemannian 2-manifold (M?, ds?)
has a structure of Riemann surface (i.e., a complex 1-manifold)
such that for each complexr coordinate z = u + v, (u,v) is an
isothermal coordinate system for ds>.

Proof. Let p € M? and take a local coordinate chart (Up; (, y))
at p which is compatible to the orientation of M?2. Then by
Fact 3.10, their exists a isothermal coordinate system (V},; (up, vp))
at p. Moreover, replacing (u,v) by (v,u) if necessary, we can
take (u,v) which has the same orientation of (z,y). Thus, we
have an atlas {(Vp; (up, vp))} consists of isothermal coordinate
systems. Since each chart is compatible of the orientation, the
coordinate change z, = up +1iv, — u4+1v4 = 24 is holomorphic.
Hence we get a complex atlas {(V};zp) }. O

Isothermal Coordinates for Minimal surfaces. Though
existence of isothermal parameters are guaranteed as Fact 3.10,
we shall give an alternative proof of it for minimal surfaces. The
proof is due to [3-2].
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Lemma 3.12 (The Poincaré lemma [Theorem 12.2 in [3-1]]).
Let D C R? be a simply connected domain, and let X\, ju be
smooth functions defined on D. If

Ae = U, that is dwo=0 for w=Adl+ pdn,
then there exists a smooth function o on D such that
g =N, oy =, that 1is, da = w.
Proposition 3.13. Assume that the graph of ¢: Dr — R de-
fined on a disc Dg := {(z,y); ®>+y? < R?} is minimal surface.
Then there exists smooth map
X:Dg 3 (z,y) — (&(z,y),m(z,y)) € X(Dg) C R?
such that
(1) X: Dg — X(Dg) is a diffeomorphism with X(0) =0,
(2) (&,7) is an isothermal parameter of the graph z = (x,y).
(3) X(Dr) > {(&n); € +n* < R*}.

Proof. By the assumption, ¢ satisfies (2.2):

(3.6) (1 + wi)@zw — 2030y Py + (1 + ‘Pi)ﬂpyy =0.
Let W= /1 + @2 + 2 and set

1+ 2 1+ ¢}
(3.7) A= Ya H1 = Ag := Ma =

W w2 T
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So one can show that (A1), = (u1), and (A2)y = (p2)s. Then
by Lemma 3.12, there exist smooth functions a, 8 such that

ap = A1, oy =p1, Bo=X, By=po.
Adding constants, we may assume «(0,0) = 5(0,0) = 0. Using
these, we define a map X = (&,7): Dr — R? by
B8) &y =zt+alzy), nlzy) =y+pEy).
By definition, the Jacobian of X is computed as

a(f»ﬂ) — det <1 + A1 M1
d(z,y) A2 1+p

Hence X is a local diffeomorphism. So, to prove (1), it is suffi-
cient to show that X is injective: Fix @y = (x0,%0) € Dg and
h = (h, k) such that @, := x¢g + h € Dr. We set ; :=  + th
(0St=1), Xy = X(x¢), oy = =(a(xy), B(y)), and

qit) :=h- (o —ap) (0StS1).

>—2(2+goi+<p§)>0.

Then by the mean value theorem, it holds that
h-(oy — o) =q¢ (1) =h-a (1) = h2X\1 + hk(p + X2) + k2 o
=W (14 ¢2)h* + 20,0, hk + (1 + @5)1@’2) >0
for some 7 € (0,1), because the quadratic form in (h, k) of the
right-hand side is positive definite. Hence
(3.9) | X (zg +h) — X(x0)]> = |21 — @0 + 01 — axg]?
= |h|* + 2h - (a1 — ao) + |eu — ao* 2 |AJ?,
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which proves the injectivity of X.
By definition, d§ = (1 4+ A1) dx + p1 dy, and dn = Ao dx +
(14 p2) dy hold. So,

1\2
(3.10) d€* +dn* = (1 + W) ds?,
ds® = (1 + ¢2) dz* + 2,0y dvdy + (1 + <p§) dy?,

proving (2).

Finally, we prove (3). Let p := inf{|X||X € X(Dg)°}.
Then p > 0 because X is a diffeomorphism and X (0) = 0.
Since the result is obvious if p = +o00, we consider the case
p € (0,00). The set X (Dgr)¢ is a closed subset in R? because X
is a diffeomorphism. Hence there exists X, € X(Dg)¢ with
| X, = p. Since X, € 0X(Dg)® = 0X(Dg), there exists
a sequence {X,} C X(Dg) which convergences to X ,. The
inverse image of {x, := X !(X,)} of such a sequence is a
sequence in Dp, which does not accumlate in Dr. Hence, by
taking a subsequence if necessary, {x,, } converges to xr € dDp,
that is, |xgr| = R. Here, setting &y = (0,0) in (3.9), we have
lz,| < |X,|, and then, |X,| =2 R, that is, X(Dg)® C D%,
proving (3). O

The minimal surface equation. The equation for minimal
surfaces are linearlized by the isothermal coordinate system:

Proposition 3.14. Let f: R? > D — R3 be a surface, and
assume the parameter (u,v) is isothermal. Then f is minimal
if and only if Af = fuu + foo = 0.
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Proof. Write the first fundamental form as ds? = €27 (du?+dv?).
Then f, - fu=fo-fo= €2 and fu - fo =0 hold. So

fuu . fu = %(fu . fu)u = UueQGa
1

fvv . fu = (fv : fu)'u - fv . fvu = _i(fv . f'u)u = _aueQUa
that is (fuu + fou) - fu = 0. Similarly, one can show (fuy + fov) -
fv =0 and hence f,, + fyv is parallel to the unit normal vector
v. On the other hand, the mean curvature H is computed as
_ L+N _ (fuu""fvv)'y

i _ 20
H= 2¢e20 - 2¢20 3 that 18, Af =2He*°v. O
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Ezxercises
3-1" Consider two minimal surfaces

f(u,v) = (coshu coswv, coshusinv, u),

g(s,t) = (scost, ssint,t).

(1) Show that (u,v) is an isothermal parameter of f.

(2) Show that there exists a isothermal parameter (u,v)
of g.
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4 Bernstein’s Theorem
More complex analysis.

Theorem 4.1 (Liouville’s theroem). A bounded holomorphic
function defined on the whole complex plane C is constant.

Proof. Let f: C — C be a holomorphic function such that
|f(z)] £ M for every z € C. Fix a point z € C. Then by
Cauchy’s integral formula, it holds that

fo- L[ SQd

i o oo (O C= 2t RS r <0 S )
R

where R is an arbitrary positive number. Hence

< L [ @I
res g [ R
_ 1 [ Ml 1 [TMRd) M
= or CRZC|2_27T/ TR

Since R is arbitrary, we can conclude f’(z) = 0 by letting R —
oo. Moreover, since z is arbitrary, f'(z) = 0 holds on C, proving
that f is constant. O

Corollary 4.2. A holomorphic function defined on C into the
upper-half plane H = {z € C| Im z > 0} must be constant.

15. July, 2016.
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Proof. Note that a linear fractional transformation

z—1
F(z)= =V —=1
(=22 =V
maps the upper-half plane H to the unit disc D = {w € C||w| <
1} bijectively. Then for each holomorphic function f: C — H,
F o f is a bounded holomorphic function defend on C. O

Conformal minimal surfaces. Let f: ¥ — R? be an im-
mersion, where X is an orientable 2-dimensional manifold. As
seen in Corollary 3.11, there exists a structure of Riemann sur-
face such that each complex coordinate z = w + iv gives an
isothermal coordinate system.

Definition 4.3. Animmersion f: ¥ — R? of a Riemann surface
Y. is said to be conformal if each complex coordinate z = u + iv
is isothermal.

In this section, we consider conformal minimal immersions
f: ¥ — R3. Then by virtue of Proposition , and Lemma 3.4,

L Of (L (of Of\\ .
(4.1) ¢._az<_2<8u—zav)).z—>cc3

is holomorphic for each complex coordinate z = u + iv of X.
Moreover, we have

Proposition 4.4. Let f: ¥ — R? be a conformal minimal im-
mersion. Then for each complex coordinate chart (U; z = u+iv)
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of X, ¢ in (4.1) satisfies

(4.2) (¢1)% + (¢2)* + (¢3)> =0,
(4.3) lp1|* + |p2l® + |ps]* > 0,

where we write ¢ = (@1, 2, d3).
Proof. Since ¢ = (1/2)(fu —if»),

(¢1)2+(¢2)2 =+ (¢3)2 = ¢ ' ¢ = i(fu : fu - fv . fv - 22fu . fv)
1
T4

(E—-G)—2iF) =0,

where E, F and G are the components of the first fundamental
form ds? = Edu® + 2F dudv + G dv? = E(du® + dv?). Then
(4.2) follows. On the other hand,

-1
|¢1|2+|¢2|2 + |¢3|2 = ¢ . d) = Z(fu : fu + fv ' fv)
1 E
=-(F+G)==>0
L E+TG) =35>0,
proving (4.3). O
Bernstein’s Theorem We prove the following global result

of minimal surfaces:

Theorem 4.5 (Bernstein, 1915). Let ¢: R? — R be a smooth
function defined on the whole plane R?, and assume the graph of
@ is minimal surface. Then p(x,y) is a linear function in (z,y).
In other words, the only entire minimal graphs are planes.
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Proof. Let p: R? — R be a solution of the minimal surface
equation

(4.4) (1+ ‘Pi)@xw = 2020y Pay + (1 + @i)@yy = 0.

Then there exists functions £ and 7 satisfying

14 2 .

(4.5) de = (1 n W”) dz + “Dmfy dy,
s L+ ¢y

(4.6) = Z22 g 4 (1 + W%> dy,

where W = | /1 + @2 + ¢2. Moreover, by Proposition 3.13, we
know that the map

R* > (z,y) — (£,1) € R®
is a diffeomorphism and

f:C 3 C=E4in— (x(&n),y(&n). e@(&n),y(&n)) € R?,

is a conformal reparametrization of the graph of . We let ¢ as
in (4.1):

of (0x Oy Oy

¢:(¢1’¢2’¢3):8c_<8f’8C78C>’ (¢ =¢&+1n).
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Since
(4.7)  4Im (¢10y) = 4Im(zcYc) = Im(ze — izy)(ye + iyy)
—1
= Teln — Yey = det <£E£ x") = det (gx éhy>

Ye  Yn Nz Ny
1+ 2 AN
—(1+21*"=) (1 _
(o13) (1 ) 25
both ¢; and ¢4 never vanish, and
¢1  Imoigy
Im— = > 0.
b2 |2/
Then we have a holomorphic map of C into the upper half plane
@: C—H.
b2
Hence by Liouville’s Theorem 4.1, we conclude that
(4.8) ¢1 = apa, that is %Z = ag—g (a € C\ {0}).

Moreover, by (4.7), we have
(4.9)  Im(¢1h2) = Im(a|p2|*) >0, thatis, Ima > 0.

By (4.8), and noticing x and y are real valued functions, we have

dr Ox oy

_ 9y
Fé—aic—aaic—aaié_—.
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Then, if we set w = = + 1y,
ow  Ox By _ 0y Ow Ox .8y _
A R A A A T

hold. We set

(4.10) q:=q(¢) = (—a+i)w+(a+i)w, (w(C) =2(0)+iy(C)).

Then we have

a—
8( 8(
that is, ( — ¢ is a holomorphic function. If we write ¢ = u + v
and a = s + it, we have

()= ) emmaso

that is,  and y are linear functions of v and v.
By holomorphicity of w, (u,v) is also an isothermal param-
eter of the surface. We set

%

~ -~ - or 0Oy O
¢ - (¢17¢27¢3) = <81,:Z’ 83)78’5)) .

Since x and y are linear functions of v and v, $1 and Qgg are con-
stants. On the other hand, since w is an isothermal (complex)
parameter, (4.2) holds for ¢:

d~)§ = fgz;% — g?)% = constant.
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Therefore, the third coordinate z is also a liner function of
and v. Hence

2(u,v) = p(2(u,v), y(u,v))

is a liner function in (u,v). Thus, by (4.11), ¢(x,y) is a linear
function. O
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FEzxercises

Solve one of the following problems:

4-1" Let f: C ¢ U — R? be a conformal minimal immersion
and set ¢ = (¢1, 2, ¢3) as (4.1). Show that

(1) the first fundamental form of f is expressed as

ds* = e*7 (du® + dv?),
where €27 = 2(|¢1|* + |$2]* + |95]%),

(2) the unit normal vector field v is expressed as

v = fU X f’U
|fu x fol
_ —i(9203 — ¢392, 301 — $103, P12 — $201)
117 + |p2|? + |63/ ’
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(3) and the composition of v: U — S? with the stereo-
graphic projection

1—V3
705?53 (v, vy,13) — ———— € CU {00
(v, 72,8) — 5 € CU{oo)
is expressed as
doy—_ 93
b1 — iy’

here z = w + v is the complex coordinate of U. (Hint:

3 = —(d1 + ig2)(d1 — ih2).)

4-2" Find a non-trivial (non-linear) solution ¢(x,y) of the par-
tial differential equation

(1 = 2w + 20205y + (1 — @2)pyy =0,

which is defined on whole R? (Hint: Try a similar method
as in 2).



