
1 Area minimizing surfaces

1.1 A review of surface theory.

Let D ⊂ R2 be a domain in the uv-plane and f : D → R3 an
immersion. We often refer to such an immersion as a surface.
Then the unit normal vector of f is given by (with ±-ambiguity)

(1.1) ν :=
fu × fv
|fu × fv|

: D −→ S2 = {x ∈ R3 | |x| = 1} ⊂ R3,

where “×” denotes the vector product of R3. The first and the
second fundamental forms are defined as

(1.2)
ds2 = df · df = E du2 + 2F du dv +Gdv2,

II = −df · dν = Ldu2 + 2M dudv +N dv2,

where “·” denotes the canonical inner product of R3. Here,

E : = fu · fu, F : = fu · fv = fv · fu, G : = fv · fv,
L : = −fu · νu, M : = −fu · νv = −fv · νu, N : = −fv · νv

= fuu · ν, = fuv · ν, = fvv · ν

are called the entries of the first and the second fundamental
forms with respect to the parameters (u, v). The area of the
image of a compact region Ω ⊂ D is computed as

(1.3) A(Ω) :=

∫∫
Ω

dA =

∫∫
Ω

|fu × fv| du dv,
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where dA = |fu × fv| du dv=
√
EG− F 2 du dv is said to be the

area element of the surface.
The derivatives of ν is written as (the Weingarten Formula)

(1.4) νu = −A1
1fu −A2

1fv, νv = −A1
2fu −A2

2fv,

A :=

(
A1

1 A1
2

A2
1 A2

2

)
=

(
E F
F G

)−1(
L M
M N

)
.

The matrix A is called the Weingarten matrix, and the determi-
nant K and the half H of the trace of A are called the Gaussian
curvature and the mean curvature, respectively:

(1.5) K := detA =
LN −M2

EG− F 2
, H :=

1

2
trA =

A1
1 +A2

2

2
.

1.2 Area minimizing surfaces.

The purpose of this section is to show the following fact:

For a given simple closed curve C in R3, the surface
which minimizing area among all surfaces bounded
by C is a surface whose mean curvature vanishes
identically.

Setting up. As the description of the above fact is rather
intuituive, we will formulate the problem.

Let C be a simple closed smooth curve in R3 and set

(1.6) SC :=

{
f : D → R3 ;

f is a C∞-immersion
f(∂D) = C

}
,
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where D (resp. D) is the open (resp. closed) unit disc and ∂D
is its boundary:1

(1.7) D := D ∪ ∂D, D : = {(u, v) ∈ R2 ; u2 + v2 < 1},
∂D : = {(u, v) ∈ R2 ; u2 + v2 = 1}

= {(cos θ, sin θ) ; θ ∈ R}.

Roughly speaking, SC is “the set of the surfaces bounded by
C”. Then we set the area functional as

(1.8) A : SC ∋ f 7−→ A(f) =

∫∫
D

|fu × fv| du dv.

Using these notations, our result can be stated as the following:

Theorem 1.1. If a surface f ∈ SC attains the minimum of the
area functional A, the mean curvature of f vanishes identically.

Taking this fact into account, we define

Definition 1.2. A surface whose mean curvature vanishes iden-
tically is said to be minimal.

Remark 1.3. As Theorem 1.1 is a necessary condition for the
minimizer, a minimal surface is not necessarily a minimizer of
the area functional.

1A map f defined on D is said to be C∞ if there exists a open set D̃
containing D and a C∞ map f̃ defined on D̃ such that f̃ |D = f .
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Variations of surfaces. To show Theorem 1.1, we want to
“differentiate” the functional A.

Definition 1.4. For a surface f ∈ SC , a variation (fixing the
boundary) of f is a C∞-map

F : D × (−ε, ε) ∋ (u, v; t) 7−→ f t(u, v) := F(u, v; t) ∈ R3

such that f0 = f and f t ∈ SC for each t ∈ (−ε, ε), where ε is a
positive number. The vector-valued function

(1.9) V (u, v) :=
∂

∂t

∣∣∣∣
t=0

f t(u, v)

is called the variational vector field of the variation F .

Lemma 1.5. For a variation F = {f t} of f ∈ Sc with varia-
tional vector field V , it holds that

d

dθ
f(cos θ, sin θ)× V (cos θ, sin θ) = 0.

Proof. Since (cos θ, sin θ) is a parametrization of ∂D, γt(θ) :=
f t(cos θ, sin θ) ∈ C for all t and θ. Thus, two vectors in the left-
hand side of the first assertion are both tangent to C, proving
the lemma.

The first variation formula.

Theorem 1.6. Let F = {f t} be a variation of f ∈ SC with
variational vector field V . Then it holds that

(1.10)
d

dt

∣∣∣∣
t=0

A(f t) = −2

∫∫
D

H
(
V · ν

)
dA,
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where H, ν and dA are the mean curvature, the unit normal
vector and the area element of f , respectively.

Proof. By the definition of the area (1.3), we have

(∗) : = d

dt

∣∣∣∣
t=0

A(f t) =
d

dt

∣∣∣∣
t=0

∫∫
D

|f t
u × f t

v| du dv

=

∫∫
D

∂

∂t

∣∣∣∣
t=0

|f t
u × f t

v| du dv

=

∫∫
D

(
Vu × fv + fu × Vv

)
· (fu × fv)

|fu × fv|
du dv

=

∫∫
D

(
Vu × fv + fu × Vv

)
· ν du dv

=

∫∫
D

((
Vu × fv

)
· ν +

(
fu × Vv

)
· ν
)
du dv.

Here, by the formula of scalar triple product

(a× b) · c = (b× c) · a = (c× a) · b = det(a, b, c),

we have

(∗) =
∫∫

D

((
ν × fv

)
· Vu +

(
fu × ν

)
· Vv

)
du dv

= (I)− (II),

(I) : =

∫∫
D

[((
ν × fv

)
· V
)
u
+
((
fu × ν

)
· V
)
v

]
du dv,

(II) : =

∫∫
D

[((
ν × fv

)
u
· V
)
+
(
fu × ν

)
v
· V
))]

du dv.
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By the Green-Stokes formula, (I) is computed as

(I) =

∫∫
D

[((
ν × fv

)
· V
)
u
−
((
ν × fu

)
· V
)
v

]
du dv,

=

∫
∂D

ν ·
((
fu du+ fv dv

)
× V

)
=

∫ π

−π

ν ·
(

d

dθ
f(cos θ, sin θ)× V (cos θ, sin θ)

)
dθ = 0.

Here, the last assertion is obtained by Lemma 1.5. On the other
hand, using the Weingarten formula (1.4), (II) is computed as

(II) : =

∫∫
D

[(
νu × fv

)
· V +

(
ν × fvu

)
· V

+
(
fuv × ν

)
· V +

(
fu × νv

)
· V
]
du dv

=

∫∫
D

[(
νu × fv

)
· V +

(
fu × νv

)
· V
]
du dv

= −
∫∫

D

[(
(A1

1fu +A2
1fv)× fv

)
· V

+
(
fu × (A1

2fu +A2
2fv)

)
· V
]
du dv

= −
∫∫

D

(A1
1 +A2

2)(fu × fv) · V du dv

= −
∫∫

D

2H(ν · V )|fu × fv| du dv

Proof of Theorem 1.1. We need the following “the funda-
mental lemma for calculus of variations”.
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Lemma 1.7. Assume a smooth function h : D → R satisifes∫∫
D

h(u, v)φ(u, v) du dv = 0

for all C∞-function with φ|∂D = 0. Then h = 0 on D.

Proof. Assume h(u0, v0) > 0 (resp. < 0)((u0, v0) ∈ D). By a
continuity, there exists ε > 0 such that h(u, v) > − on an ε-ball
B := Bε(u0, v0) centered at (u0, v0). Let φ be a non-negative
C∞-function on D such that φ > 0 on B and 0 on D \B. Then∫∫

D

hφdu dv =

∫∫
B

hφdu dv > 0 (resp. < 0),

a contradiction.

Proof of Theorem 1.6. Assume f ∈ SC minimizes the area. Then
for any variation F = {f t} of f , A(f t) is not less than A(f) =
A(f0). Then by Theorem 1.6, it holds that

0 =
d

dt

∣∣∣∣
t=0

A(f t) = −2

∫
D

H(V · ν)|fu × fv| du dv.

Let φ be a C∞-function onD with φ|∂D = 0. Then f t := f+tφν
is a variation of f with variational vector field V = φν. Thus,∫∫

H|fu × fv|φ = 0.

Since φ is arbitrary, Lemma 1.7 yields the conclusion.
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Exercises

1-1H For P, Q ∈ R2, set

CP,Q :=

{
γ : [0, 1] → R2;

γ is a regular curve

γ(0) = P, γ(1) = Q

}
,

and denote by L the length functional:

L(γ) :=
∫ 1

0

|γ̇(s)| ds
(
˙ =

d

ds

)
A variation of a curve γ ∈ CP,Q is a C∞-map

Γ : [0, 1]× (−ε, ε) → γt(s) = Γ (s, t) ∈ R2

such that γt ∈ CP,Q for each t ∈ (−ε, ε) and γ0 = γ.

Then show the first variation formula for the length func-
tional

d

dt

∣∣∣∣
t=0

L(γt) = −
∫ 1

0

(V · h) ds, h :=
ÿẋ− ẍẏ

|γ̇|3
(−ẏ, ẋ),

where V is the variational vector field of the variation {γt}
of the curve γ(s) = (x(s), y(s)).
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2 Classical Examples

Graphs. For a C∞ function φ(x, y) on a domain (or an open
set) D ⊂ R2, its graph is considered as a parametrized surface

(2.1) f : D ∋ (x, y) 7−→
(
x, y, φ(x, y)

)
∈ R3.

The surface (2.1) is minimal if and only if

(2.2) (2δ3H =) (1 + φ2
y)φxx − 2φxφyφxy + (1 + φ2

x)φyy = 0,

where δ =
√
1 + φ2

x + φ2
y. The (nonlinear, elliptic) partial dif-

ferential equation (2.2) is called the minimal surface equation.

Example 2.1. A linear function φ(x, y) = ax+ by + c (a, b and
c are constants) satisfies (2.2), and its graph is a plane. It is
known that the entire (i.e., defined on whole R2) solution of
(2.2) is a linear function (Bernstein [2-1], [2-2]).

Example 2.2. The graph of the function

(2.3) φ(x, y) =
1

a
log

cos ay

cos ax
(a > 0 is a constant)

(x, y) ∈
∪

m, n ∈ Z
m + n: even

{
(x, y) ∈ R2

∣∣ |ax−mπ| < π
2 , |ay − nπ| < π

2

}

is a minimal surface, called the Scherk surface (Figure 1). On
the domain {(x, y); |ax| < π/2, |ay| < π/2}, φ is expressed as

φ(x, y) = 1
a log cos ax− 1

a log cos ay.
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Figure 1: the Scherk surface

In general, a graph of a function φ(x, y) = F (x) + G(y) is
called a translation surface.

Theorem 2.3. A translation minimal surface is congruent to
a part of a plane or a part of the Scherk surface.

Proof. For φ(x, y) = F (x) +G(y), (2.2) is equivalent to

(2.4)
F ′′

1 + (F ′)2
= − G̈

1 + (Ġ)2
=: a.

Since the left-hand (resp. middle) side of (2.4) is a function
depending only on x (resp. y), a must be a constant. When
a = 0, (2.4) reduce to F ′′ = 0, G̈ = 0, i.e., φ is a linear function.

Assume a ̸= 0. Without loss of generality, we may assume
that a > 0 Then the first equation in (2.4) yields tan−1 F ′(x) =
ax + c1, where c1 is a constant. By a translation along the x-
axis, we can set c1 = 0, and then F (x) = − 1

a log cos ax + c2,

01. July, 2016. Revised: 08. July, 2016
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Figure 2: The catenoid and the helicoid.

with constant c2. By a translation along the z-axis, we may
set c2 = 0: F (x) = − 1

a log cos ax. Similarly, we have G(y) =
1
a log cos ay.

Surfaces of revolution. We consider a surface of revolution

(2.5) f(u, v) =
(
x(u) cos v, x(u) sin v, z(u)

)
,

γ(u) :=
(
x(u), z(u)

)
: R ⊃ I → R2, x(u) ̸= 0

where γ is a regular curve on the xz-plane, called the profile
curve of the surface of revolution.

Example 2.4. Let γ(u) = (a cosh u
a , u), that is, γ is the graph

x = a cosh z
a on the xz-plane, called the catenary. Then the

surface (2.5) is minimal, called catenoid (Figure. 2, left).
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Theorem 2.5. A minimal surface of revolution is congruent to
a part of the catenoid or the plane.

Proof. We assume that x(u) > 0 and u in (2.5) is the arclength
parameter of γ:

(2.6) (x′)2 + (z′)2 = 1 (′ = d/du) .

Then f is minimal if and only if

(2.7) 2H = x′z′′ − z′x′′ +
z′

x
= 0.

We shall determine
(
x(u), z(u)

)
satisfying (2.7) and (2.6).

Assume
(
x(u), z(u)

)
satisfy these equations and consider the

case that z′ ̸= 0 for some interval I ′. By a reflection about the
x-axis, we may assume z′ > 0 on I ′. Differentiating (2.6), we
have x′x′′ + z′z′′ = 0. Hence, noticing z′ is positive on I ′, (2.7)
is equivalent to

0 = z′
(
x′z′′ − z′x′′ +

z′

x

)
= x′z′z′′ − (z′)2x′ +

(z′)2

x

= −x′x′x′′ −
(
1− (x′)2

)
x′′ +

1− (x′)2

x
= x′′ +

1− (x′)2

x
.

Since 1− (x′)2 = (z′)2 > 0 and x > 0, this is equivalent to

−2x′x′′

1− (x′)2
=

−2x′

x
.

Integrating this in u, we have

log
(
1− (x′)2

)
= log x−2 + constant, that is, 1− (x′)2 =

a2

x2
,



13 (20160715) Sect. 2

where a is a constant. Hence we have

x′ = ±
√

1− a2

x2
, that is, du =

±x dx√
x2 − a2

.

Integrating this, we get
√
x2 − a2 = ±u+constant. By a change

of the arclength parameter u 7→ ±u+ constant, we have

(2.8) u =
√
x2 − a2, i.e., x =

√
u2 + a2.

By (2.6) and the assumption z′ > 0, we have z′ = a/
√
u2 + a2,

and

z =

∫
a√

u2 + a2
du = a log

(
u+

√
u2 + a2

)
+ constant.

By a translation along the z-axis, we may choose the constant
above to be −a log a. Then we have

(2.9) z = a log
(
(u+

√
u2 + a2)/a)

)
,

and thus, cosh z
a = 1

a

√
u2 + a2 = x

a . Therefore, the curve(
x(u), z(u)

)
is a catenary, and z′ does not vanish on whole I.

Otherwise, if z′ = 0 on an interval I, z(u) is constant. Thus
the corresponding surface is a part of horizontal plane.

Ruled surfaces. Let γ(u) be a parametrized space curve, and
ξ(u) is a vector valued function such that γ̇(u), and ξ(u) are
linearly independent for each u. Then a parametrized surface

(2.10) f(u, v) := γ(u) + vξ(u)



Sect. 2 (20160715) 14

is called a ruled surface, because it is a locus of moving straight
lines. Replacing ξ by ξ/|ξ| and v|ξ| by v, we may assume without
loss of generality that |ξ| = 1. Moreover, if we set

(2.11) γ̃(u) := γ(u) + τ(u)ξ(u), τ(u) :=

∫ u

u0

γ̇(t) · ξ(t) dt,

(2.10) is written as γ̃(u) + ṽξ(u) (ṽ = v − τ), where γ̃′ · ξ = 0.
Finally, we can choose u to be the arclength of γ.

Summing up, any ruled surface can be expressed as

(2.12) f(u, v) = γ(u) + vξ(u),

|ξ(u)| = |γ′(u)| = 1, γ′(u) · ξ(u) = 0.

Example 2.6. For γ(u) := (0, 0, u) and ξ(u) := (cos au, sin au, 0)
(a > 0 is a constant), the surface (2.10) is minimal, called the
helicoid (Figure 2, right).

Theorem 2.7. A minimal ruled surface is congruent to a part
of a helicoid or a plane.

Proof. Assume that (2.12) is minimal. Since ξ ·ξ′ = 0, entries of
the first and the second fundamental forms satisfy F := fu ·fv =
0 and N := fvv · ν = 0. Thus, f is minimal if and only if

2
√
EG− F 2

3
H = EN − 2FM +GL = GL = 0, i.e. L = 0.

Since

|fu × fv|L = (fu × fv) · fuu = det(γ′ + vξ′, ξ, γ′′ + vξ′′),
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the condition H = 0 is equivalent to

det(γ′, ξ, γ′′) = 0,(2.13)

det(ξ′, ξ, γ′′) + det(γ′, ξ, ξ′′) = 0,(2.14)

det(ξ′, ξ, ξ′′) = 0.(2.15)

Here, {γ′, ξ, γ′ × ξ} forms an orthonormal basis of R3 for each
u satisfying the following Frenet-Serret-type formulas:

(2.16) γ′′ = κξ, ξ′ = −κγ′ + τ(γ′ × ξ), (γ′ × ξ)′ = −τξ,

where κ and τ are smooth functions in u. In fact, since |γ′| = 1,
γ′′ · γ′ = 0, and (2.13) implies γ′′ · (γ′ × ξ) = 0. Thus the first
equation follows. Similarly, ξ′ ·ξ = 0 and ξ′ ·γ′ = (ξ ·γ′)′−ξ ·γ′′ =
−ξ · γ′′ = −κ yield the second equation. Finally,

(γ′×ξ)′ ·γ′ = −(γ′×ξ)·γ′′ = 0, (γ′×ξ)′ ·ξ = −(γ′×ξ)·ξ′ = −τ

imply the third equation.
Differentiating (2.14) with (2.16), we have

(2.17) ξ′′ = −κ′γ′ − (κ2 + τ2)ξ + τ ′(γ′ × ξ).

Hence (2.14), 0 = det(γ′, ξ, ξ′′) = τ ′, and then τ is constant. In
addition, by (2.15), we have

0 = det(ξ′, ξ, ξ′′) = (−κτ ′ + κ′τ) = det(γ′, ξ, γ′ × ξ) = κ′τ.

Assume the constant τ ̸= 0. Then κ′ = 0, that is, κ is also
constant, and (2.17) turns to be

(2.18) ξ′′ = −(κ2 + τ2)ξ.
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So, if we set γ̃ := γ + (κ2 + τ2)ξ and ṽ = v − (κ2 + τ2), we
have f = γ̃ + ṽξ with γ̃′′ = 0, that is, γ̃ is a straight line. Then
by an isometry of R3 and a change of parameter u, we can set
γ̃(u) = (0, 0, u). Since ξ is perpendicular to γ̃′ = (0, 0, 1), the
image of ξ(u) lies on the unit circle in the xy-plane. Hence, by
(2.18), up to an isometry and a change of parameters, we have

ξ(u) = (cos au, sin au, 0), a =
√
κ2 + τ2 > 0,

Then the surface is a helicoid.
On the other hand, when τ = 0, γ′ × ξ is constant, and we

may set γ′ × ξ = (0, 0, 1). Since γ′ and ξ are perpendicular to
(0, 0, 1), f(u, v) = γ(u) + vξ(u) lies on a plane parallel to the
xy-plane, that is, the image of the surface is part of a plane.
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aux équations dérivées partielles du type elliptique, Comm. Soc.
Math. Kharkov 15 38–45. (1915–1917).

[2-2] Osserman, R., A survey of minimal surfaces, Dover Publ.

Exercises

2-1H Show that the surface {(x, y, z) ; sinhx sinh y = sin z} is
minimal.
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3 Isothermal Coordinates

A Review of Complex Analysis. Let C be the complex
plane. A C1-function2f : C ∋ D ∈ z 7→ w = f(z) ∈ C defined
on a domain D is said to be holomorphic if the derivative

f ′(z) := lim
h→0

f(z + h)− f(z)

h

exists for all z ∈ D.

Fact 3.1 (The Cauchy-Riemann equation). A function f : C ∋
D → C is holomorphic if and only if

(3.1)
∂u

∂ξ
=

∂v

∂η
and

∂u

∂η
= −∂v

∂ξ

holds on D, where w = f(z), z = ξ+ iη, w = u+ iv (i =
√
−1).

For functions of complex variable z = ξ + iη, we set

(3.2)
∂

∂z
:=

1

2

(
∂

∂ξ
− i

∂

∂η

)
,

∂

∂z̄
:=

1

2

(
∂

∂ξ
+ i

∂

∂η

)
.

Corollary 3.2. For a complex function f , (3.1) is equivalent to

(3.3)
∂f

∂z̄
= 0.

Proof. Setting w = f(z) = u+ iv and z = ξ+ iη. Then the real
(resp. imaginary) part of the left-hand side of (3.3) coincides
with the first (resp. second) equation of (3.1).

08. July, 2016. Revised: 05. July, 2016
2Of class C1 as a map from D ⊂ R2 to R2.
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Definition 3.3. A real-valued function φ : R2 ⊃ U → R is said
to be harmonic if it satisfies the Laplace equation

∆φ := φξξ + φηη = 0.

Lemma 3.4. If a function φ : C ⊃ D → R is harmonic, ∂φ/∂z
is a holomorphic function on D, where z is a complex coordinate
of C.

Proof. Corollary 3.2 yields the conclusion since

∂

∂z̄

∂φ

∂z
=

∂2φ

∂z̄∂z
=

1

4
∆φ.

Isothermal Coordinates.

Definition 3.5. Let f : M2 → R3 be an immersion of 2-manifold,
and ds2 its first fundamental form. A local coordinate chart(
U ; (u, v)

)
of M2 is called an isothermal coordinate system or a

conformal coordinate system if ds2 is written in the form3

ds2 = e2σ(du2 + dv2), σ = σ(u, v) ∈ C∞(U).

Example 3.6. A parametrization of the catenoid in Example 2.4
is isothermal if a = 1. In fact, the first fundamental form is
expressed as cosh2(u/a)(du2 + a2dv2).

3The notion of the isothermal coordinate system can be defined not only
for surfaces but also for Riemannian 2-manifolds, that is, differentiable 2-
manifolds M2 with Riemannian metrics ds2 (the first fundamental forms).
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Definition 3.7. Two charts
(
Uj ; (uj , vj)

)
(j = 1, 2) of a 2-

manifold M2 has the same (resp. opposite) orientation if the Ja-

cobian ∂(u2,v2)
∂(u1,v1)

is positive (resp. negative) on U1∩U2. A manifold

M2 is said to be oriented if there exists an atlas
{(

Uj ; (uj , vj)
)}

such that all charts have the same orientations. A choice of such
an atlas is called an orientation of M2.

Proposition 3.8. Let (u, v) be an isothermal coordinate sys-
tem of a surface. Then another coordinate system (ξ, η) is also
isothermal if and only if the parameter change (ξ, η) 7→ (u, v)
satisfy

(3.4)
∂u

∂ξ
= ε

∂v

∂η
,

∂u

∂η
= −ε

∂v

∂ξ
,

where ε = 1 (resp. −1) if (u, v) and (ξ, η) has the same (resp.
the opposite) orientation.

Proof. If we write ds2 = e2σ(du2 + dv2), it holds that

ds2 = e2σ
(
(u2

ξ + v2ξ ) dξ
2 +2(uξvη + uηvξ) dξ dη+(u2

η + v2η) dη
2
)
.

Thus, (ξ, η) is isothermal if and only if

(3.5) u2
ξ + v2ξ = u2

η + v2η, (uξvη + uηvξ) = 0.

The second equality yields (vξ, vη) = ε(−uη, uξ) for some func-
tion ε. Substituting this into the first equation of (3.5), we get
ε = ±1. Moreover,

∂(u, v)

∂(ξ, η)
= det

(
uξ uη

vξ vη

)
= det

(
uξ uη

−εuη εuξ

)
= ε(u2

ξ + u2
η).

Thus, the conclusion follows.
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Corollary 3.9. Let (u, v) is an isothermal coordinate system.
Then a coordinate system (ξ, η) is isothermal and has the same
orientation as (u, v) if and only if the map ξ + iη 7→ u + iv
(i =

√
−1) is holomorphic.

Proof. Equations 3.4 for ε = +1 are nothing but the Cauchy-
Riemann equations (3.1).

Fact 3.10 (Section 15 in [3-1]). Let (M2, ds2) be an arbitrary
Riemannian manifold. Then for each p ∈ M2, there exists an
isothermal chart containing p.

Corollary 3.11. Any oriented Riemannian 2-manifold (M2, ds2)
has a structure of Riemann surface (i.e., a complex 1-manifold)
such that for each complex coordinate z = u + iv, (u, v) is an
isothermal coordinate system for ds2.

Proof. Let p ∈ M2 and take a local coordinate chart
(
Up; (x, y)

)
at p which is compatible to the orientation of M2. Then by
Fact 3.10, their exists a isothermal coordinate system

(
Vp; (up, vp)

)
at p. Moreover, replacing (u, v) by (v, u) if necessary, we can
take (u, v) which has the same orientation of (x, y). Thus, we
have an atlas

{(
Vp; (up, vp)

)}
consists of isothermal coordinate

systems. Since each chart is compatible of the orientation, the
coordinate change zp = up+ivp 7→ uq+ivq = zq is holomorphic.
Hence we get a complex atlas

{(
Vp; zp

)}
.

Isothermal Coordinates for Minimal surfaces. Though
existence of isothermal parameters are guaranteed as Fact 3.10,
we shall give an alternative proof of it for minimal surfaces. The
proof is due to [3-2].
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Lemma 3.12 (The Poincaré lemma [Theorem 12.2 in [3-1]]).
Let D ⊂ R2 be a simply connected domain, and let λ, µ be
smooth functions defined on D. If

λξ = µη, that is dω = 0 for ω = λ dξ + µdη,

then there exists a smooth function α on D such that

αξ = λ, αη = µ, that is, dα = ω.

Proposition 3.13. Assume that the graph of φ : DR → R de-
fined on a disc DR := {(x, y) ; x2+y2 < R2} is minimal surface.
Then there exists smooth map

X : DR ∋ (x, y) 7−→
(
ξ(x, y), η(x, y)

)
∈ X(DR) ⊂ R2

such that

(1) X : DR → X(DR) is a diffeomorphism with X(0) = 0,

(2) (ξ, η) is an isothermal parameter of the graph z = φ(x, y).

(3) X(DR) ⊃ {(ξ, η) ; ξ2 + η2 < R2}.

Proof. By the assumption, φ satisfies (2.2):

(3.6) (1 + φ2
x)φxx − 2φxφyφxy + (1 + φ2

y)φyy = 0.

Let W :=
√
1 + φ2

x + φ2
y and set

(3.7) λ1 :=
1 + φ2

x

W
, µ1 = λ2 :=

φxφy

W
, µ2 :=

1 + φ2
y

W
.
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So one can show that (λ1)y = (µ1)x and (λ2)y = (µ2)x. Then
by Lemma 3.12, there exist smooth functions α, β such that

αx = λ1, αy = µ1, βx = λ2, βy = µ2.

Adding constants, we may assume α(0, 0) = β(0, 0) = 0. Using
these, we define a map X = (ξ, η) : DR → R2 by

(3.8) ξ(x, y) := x+ α(x, y), η(x, y) := y + β(x, y).

By definition, the Jacobian of X is computed as

∂(ξ, η)

∂(x, y)
= det

(
1 + λ1 µ1

λ2 1 + µ2

)
= 2(2 + φ2

x + φ2
y) > 0.

Hence X is a local diffeomorphism. So, to prove (1), it is suffi-
cient to show that X is injective: Fix x0 = (x0, y0) ∈ DR and
h = (h, k) such that x1 := x0 + h ∈ DR. We set xt := x + th
(0 ≦ t ≦ 1), Xt := X(xt), αt :=

(
α(xt), β(xt)

)
, and

q(t) := h · (αt −α0) (0 ≦ t ≦ 1).

Then by the mean value theorem, it holds that

h · (α1 −α0) = q′(τ) = h ·α′(τ) = h2λ1 + hk(µ1 + λ2) + k2µ2

= W−1
(
(1 + φ2

x)h
2 + 2φxφyhk + (1 + φ2

y)k
2
)
> 0

for some τ ∈ (0, 1), because the quadratic form in (h, k) of the
right-hand side is positive definite. Hence

|X(x0 + h)−X(x0)|2 = |x1 − x0 +α1 −α0|2(3.9)

= |h|2 + 2h · (α1 −α0) + |α1 −α0|2 ≧ |h|2,
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which proves the injectivity of X.
By definition, dξ = (1 + λ1) dx + µ1 dy, and dη = λ2 dx +

(1 + µ2) dy hold. So,

(3.10) dξ2 + dη2 =

(
1 +

1

W

)2

ds2,

ds2 = (1 + φ2
x) dx

2 + 2φxφy dx dy + (1 + φ2
y) dy

2,

proving (2).
Finally, we prove (3). Let ρ := inf{|X| |X ∈ X(DR)

c}.
Then ρ > 0 because X is a diffeomorphism and X(0) = 0.
Since the result is obvious if ρ = +∞, we consider the case
ρ ∈ (0,∞). The set X(DR)

c is a closed subset in R2 because X
is a diffeomorphism. Hence there exists Xρ ∈ X(DR)

c with
|Xρ| = ρ. Since Xρ ∈ ∂X(DR)

c = ∂X(DR), there exists
a sequence {Xn} ⊂ X(DR) which convergences to Xρ. The
inverse image of {xn := X−1(Xn)} of such a sequence is a
sequence in DR, which does not accumlate in DR. Hence, by
taking a subsequence if necessary, {xn} converges to xR ∈ ∂DR,
that is, |xR| = R. Here, setting x0 = (0, 0) in (3.9), we have
|xn| ≦ |Xn|, and then, |Xρ| ≧ R, that is, X(DR)

c ⊂ Dc
R,

proving (3).

The minimal surface equation. The equation for minimal
surfaces are linearlized by the isothermal coordinate system:

Proposition 3.14. Let f : R2 ⊃ D → R3 be a surface, and
assume the parameter (u, v) is isothermal. Then f is minimal
if and only if ∆f = fuu + fvv = 0.
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Proof. Write the first fundamental form as ds2 = e2σ(du2+dv2).
Then fu · fu = fv · fv = e2σ and fu · fv = 0 hold. So

fuu · fu =
1

2
(fu · fu)u = σue

2σ,

fvv · fu = (fv · fu)v − fv · fvu = −1

2
(fv · fv)u = −σue

2σ,

that is (fuu+ fvv) · fu = 0. Similarly, one can show (fuu+ fvv) ·
fv = 0 and hence fuu + fvv is parallel to the unit normal vector
ν. On the other hand, the mean curvature H is computed as

H =
L+N

2e2σ
=

(fuu + fvv) · ν
2e2σ

, that is, ∆f = 2He2σν.
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Exercises

3-1H Consider two minimal surfaces

f(u, v) = (coshu cos v, coshu sin v, u),

g(s, t) = (s cos t, s sin t, t).

(1) Show that (u, v) is an isothermal parameter of f .

(2) Show that there exists a isothermal parameter (u, v)
of g.
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4 Bernstein’s Theorem

More complex analysis.

Theorem 4.1 (Liouville’s theroem). A bounded holomorphic
function defined on the whole complex plane C is constant.

Proof. Let f : C → C be a holomorphic function such that
|f(z)| ≦ M for every z ∈ C. Fix a point z ∈ C. Then by
Cauchy’s integral formula, it holds that

f ′(z) =
1

2πi

∫
CR

f(ζ) dζ

(z − ζ)2
(CR : ζ = z +Reiθ;−π < θ ≦ π),

where R is an arbitrary positive number. Hence

|f ′(z)| ≦ 1

2π

∫
CR

|f(ζ)| |dζ|
|z − ζ|2

≦ 1

2π

∫
CR

M |dζ|
|z − ζ|2

=
1

2π

∫ π

π

M Rdθ

R2
=

M

R
.

Since R is arbitrary, we can conclude f ′(z) = 0 by letting R →
∞. Moreover, since z is arbitrary, f ′(z) = 0 holds on C, proving
that f is constant.

Corollary 4.2. A holomorphic function defined on C into the
upper-half plane H = {z ∈ C | Im z > 0} must be constant.

15. July, 2016.



Sect. 4 (20160715) 26

Proof. Note that a linear fractional transformation

F (z) =
z − i

z + i
(i =

√
−1)

maps the upper-half planeH to the unit discD = {w ∈ C | |w| <
1} bijectively. Then for each holomorphic function f : C → H,
F ◦ f is a bounded holomorphic function defend on C.

Conformal minimal surfaces. Let f : Σ → R3 be an im-
mersion, where Σ is an orientable 2-dimensional manifold. As
seen in Corollary 3.11, there exists a structure of Riemann sur-
face such that each complex coordinate z = u + iv gives an
isothermal coordinate system.

Definition 4.3. An immersion f : Σ → R3 of a Riemann surface
Σ is said to be conformal if each complex coordinate z = u+ iv
is isothermal.

In this section, we consider conformal minimal immersions
f : Σ → R3. Then by virtue of Proposition , and Lemma 3.4,

(4.1) ϕ :=
∂f

∂z

(
=

1

2

(
∂f

∂u
− i

∂f

∂v

))
: Σ → C3

is holomorphic for each complex coordinate z = u + iv of Σ.
Moreover, we have

Proposition 4.4. Let f : Σ → R3 be a conformal minimal im-
mersion. Then for each complex coordinate chart (U ; z = u+iv)
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of Σ, ϕ in (4.1) satisfies

(ϕ1)
2 + (ϕ2)

2 + (ϕ3)
2 = 0,(4.2)

|ϕ1|2 + |ϕ2|2 + |ϕ3|2 > 0,(4.3)

where we write ϕ = (ϕ1, ϕ2, ϕ3).

Proof. Since ϕ = (1/2)(fu − ifv),

(ϕ1)
2+(ϕ2)

2 + (ϕ3)
2 = ϕ · ϕ =

1

4

(
fu · fu − fv · fv − 2ifu · fv

)
=

1

4

(
(E −G)− 2iF

)
= 0,

where E, F and G are the components of the first fundamental
form ds2 = E du2 + 2F du dv + Gdv2 = E(du2 + dv2). Then
(4.2) follows. On the other hand,

|ϕ1|2+|ϕ2|2 + |ϕ3|2 = ϕ · ϕ̄ =
1

4

(
fu · fu + fv · fv)

=
1

4
(E +G) =

E

2
> 0,

proving (4.3).

Bernstein’s Theorem We prove the following global result
of minimal surfaces:

Theorem 4.5 (Bernstein, 1915). Let φ : R2 → R be a smooth
function defined on the whole plane R2, and assume the graph of
φ is minimal surface. Then φ(x, y) is a linear function in (x, y).
In other words, the only entire minimal graphs are planes.



Sect. 4 (20160715) 28

Proof. Let φ : R2 → R be a solution of the minimal surface
equation

(4.4) (1 + φ2
y)φxx − 2φxφyφxy + (1 + φ2

x)φyy = 0.

Then there exists functions ξ and η satisfying

dξ =

(
1 +

1 + φ2
x

W

)
dx+

φxφy

W
dy,(4.5)

dη =
φxφy

W
dx+

(
1 +

1 + φ2
y

W

)
dy,(4.6)

where W =
√
1 + φ2

x + φ2
y. Moreover, by Proposition 3.13, we

know that the map

R2 ∋ (x, y) 7−→ (ξ, η) ∈ R2

is a diffeomorphism and

f : C ∋ ζ := ξ+ iη 7−→
(
x(ξ, η), y(ξ, η), φ(x(ξ, η), y(ξ, η)

))
∈ R3,

is a conformal reparametrization of the graph of φ. We let ϕ as
in (4.1):

ϕ = (ϕ1, ϕ2, ϕ3) =
∂f

∂ζ
=

(
∂x

∂ζ
,
∂y

∂ζ
,
∂φ

∂ζ

)
, (ζ = ξ + iη).
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Since

4 Im
(
ϕ1ϕ2

)
= 4 Im

(
xζyζ

)
= Im(xξ − ixη)(yξ + iyη)(4.7)

= xξyη − yξxη = det

(
xξ xη

yξ yη

)
= det

(
ξx ξy
ηx ηy

)−1

=

(
1 +

1 + φ2
x

W

)(
1 +

1 + φ2
y

W

)
−

φ2
xφ

2
y

W 2
> 0,

both ϕ1 and ϕ2 never vanish, and

Im
ϕ1

ϕ2
=

Imϕ1ϕ2

|ϕ2|2
> 0.

Then we have a holomorphic map of C into the upper half plane

ϕ1

ϕ2
: C −→ H.

Hence by Liouville’s Theorem 4.1, we conclude that

(4.8) ϕ1 = aϕ2, that is
∂x

∂ζ
= a

∂y

∂ζ
(a ∈ C \ {0}).

Moreover, by (4.7), we have

(4.9) Im(ϕ1ϕ2) = Im(a|ϕ2|2) > 0, that is, Im a > 0.

By (4.8), and noticing x and y are real valued functions, we have

∂x

∂ζ̄
=

∂x

∂ζ
= a

∂y

∂ζ
= ā

∂y

∂ζ̄
.
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Then, if we set w = x+ iy,

∂w

∂ζ̄
=

∂x

∂ζ̄
+ i

∂y

∂ζ̄
= (ā+ i)

∂y

∂ζ̄
,

∂w̄

∂ζ̄
=

∂x

∂ζ̄
− i

∂y

∂ζ̄
= (ā− i)

∂y

∂ζ̄

hold. We set

(4.10) q := q(ζ) = (−ā+i)w+(ā+i)w̄,
(
w(ζ) = x(ζ)+iy(ζ)

)
.

Then we have

∂q

∂ζ̄
= (−ā+ i)(ā+ i)

∂y

∂ζ̄
+ (ā+ i)(ā− i)

∂y

∂ζ̄
= 0,

that is, ζ 7→ q is a holomorphic function. If we write q = u+ iv
and a = s+ it, we have

(4.11)

(
u
v

)
=

(
0 −2t
2 −2s

)(
x
y

)
(t = Im a > 0).

that is, x and y are linear functions of u and v.
By holomorphicity of w, (u, v) is also an isothermal param-

eter of the surface. We set

ϕ̃ = (ϕ̃1, ϕ̃2, ϕ̃3) :=

(
∂x

∂w
,
∂y

∂w
,
∂z

∂w

)
.

Since x and y are linear functions of u and v, ϕ̃1 and ϕ̃2 are con-
stants. On the other hand, since w is an isothermal (complex)
parameter, (4.2) holds for ϕ̃:

ϕ̃2
3 = −ϕ̃2

1 − ϕ̃2
2 = constant.
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Therefore, the third coordinate z is also a liner function of u
and v. Hence

z(u, v) = φ
(
x(u, v), y(u, v)

)
is a liner function in (u, v). Thus, by (4.11), φ(x, y) is a linear
function.
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Exercises

Solve one of the following problems:

4-1H Let f : C ⊂ U → R3 be a conformal minimal immersion
and set ϕ = (ϕ1, ϕ2, ϕ3) as (4.1). Show that

(1) the first fundamental form of f is expressed as

ds2 = e2σ(du2 + dv2),

where e2σ = 2(|ϕ1|2 + |ϕ2|2 + |ϕ3|2),

(2) the unit normal vector field ν is expressed as

ν =
fu × fv
|fu × fv|

=
−i(ϕ2ϕ3 − ϕ3ϕ2, ϕ3ϕ1 − ϕ1ϕ3, ϕ1ϕ2 − ϕ2ϕ1)

|ϕ1|2 + |ϕ2|2 + |ϕ3|2
,
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(3) and the composition of ν : U → S2 with the stereo-
graphic projection

π ◦ S2 ∋ (ν1, ν2, ν3) 7−→
1− ν3
ν1 + iν2

∈ C ∪ {∞}

is expressed as

π ◦ ν =
ϕ3

ϕ1 − iϕ2
,

here z = u + iv is the complex coordinate of U . (Hint:
ϕ2
3 = −(ϕ1 + iϕ2)(ϕ1 − iϕ2).)

4-2H Find a non-trivial (non-linear) solution φ(x, y) of the par-
tial differential equation

(1− φ2
y)φxx + 2φxφyφxy + (1− φ2

x)φyy = 0,

which is defined on whole R2 (Hint: Try a similar method
as in 2).


