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6 Surfaces of constant negative curvature—
the sine Gordon equation

Surfaces of constant negative curvature. As a corollary
to Theorem 5.9 (the existence of asymptotic Chebyshev net)
and the fundamental theorem for surface theory (Theorem 4.1),
we have

Theorem 6.1. For a function 8 = 6(u,v) defined on a simply
connected region D on R? satisfying 8y, = sin@ and

(6.1) 0(u,v) € (0,7) ((u,v) € D)

there erists a unique immersion f: D — R3 (up to congruence
of R3) with first and second fundamental forms as

(6.2) ds? = du® + 2cosf dudv + dv?, II = 2sin 0 du dv.

Conversely, any surfaces in R3 with constant curvature —1 is
obtained in this way.

As mentioned in Section 5, the equation
(6.3) Oup = sin f.

Theorem 6.1 claims that the solutions of the sine-Gordon equa-
tion with

Ezample 6.2. Let

(6.4) O(u,v) = 4tan"! exp(u + v).
20. May, 2016.
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Then one can easily see that it satisfies the sine-Gordon equa-
tion, and satisfies (6.1) on a domain D = {(u,v)|u + v < 0}.

If we set € :== u — v,  := u + v, the first and second funda-
mental forms can be written as

_ tanhn

ds? = (de? 4 sinh® ndn?), I = (—de? 4 dn?),

cosh? & coshn

which coincide with the fundamental forms of the pseudosphere
(Problem 1-1):

cos§ siné

f(«f,n)z( ,n—tanhn).

coshn’ coshn

The third fundamental form and the flat structure. Let
f: D — R3 be an immersion and v: D — S2 C R? its unit
normal vector field, where S? is considered as the set of unit
vectors of R3.

Definition 6.3. The third fundamental form of f is the metric
on D induced by the map v:

II := dv - dv = (v, - v) du® + 2(vy - V) dudv + (v, - 1y,) dv?,
where (u,v) is a local coordinate system on D.
Lemma 6.4. The third fundamental form satisfies

I — 2HIT + K ds* = 0,

where H and K are the mean and the Gauss curvatures of f,
and ds® and II are the first fundamental forms, respectively.
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Proof. Fix alocal coordinate system (u,v) and let T and II be
the first and second fundamental matrices, respectively. Then
the Weingarten matrix A is defined as A := I ~' I . Here, by
the Weingarten formula (Theorem 2.1), it holds that

(Vu; Vv) = *(fua fv)A

Then the matrix representation (the third fundamental matrix)
of IIT is computed as

e ¢ t
I = (qu,) (Vual/v) = tA < fu (fu,fv)A
st g~ o a1 aN\2 -
ST I =0T n =1 (I—lﬂ) = 742
On the other hand, by the Cayley-Hamilton formula we have
A% — (tr A)A + (det A)T = A* —2HA+ KI = O,

where I and O are the 2 x 2 identity matrix and the zero matrix,
respectively. Thus, we have

O=TA>—2HTA+KTII —2HII + K1,
and hence we have the conclusion. O

Theorem 6.5. Let f: D — R? be an immersion with constant
Gaussian curvature —1, and let v be its unit normal vector field.
Then ds* + III is a flat metric, that is, a Riemann metric of
constant Gaussian curvature 0.

Sect. 6 (20160527) 44

Proof. Take the asymptotic Chebyshev net (u,v) as
ds? = du® 4+ 2cosOdudv + dv?, II = 2sinfdudv.
Then the Weingarten matrix is expressed as
. ( 1 cos¢9>_1 < 0 sin9> _ (—cott csct)
cosf 1 sinf 0 csct —cott)’

and thus the mean curvature H is — cott. Thus, by Lemma 6.4,

I = —2cottIl + 1 = ! —cost .
—cosf 1
Hence
I+ =21,
that is, ds? + III = 2(du® + dv?) which is a flat metric. O

Remark 6.6. It is known that a complete, simply connected flat
(with zero Gaussian curvature) Riemannian manifold (M, ds?)
is isometric to R? with the canonical metric. We consider a com-
plete immersion f: M — R? with constant Gaussian curvature.
Since the induced metric ds/?vis complete, so is do? := ds? + III.
Then the universal cover (M,ds?) of (M,do?) is isometric to
the Euclidean plane.

Equations for the orthonormal frame. Let f: D — R? be
a surface of constant Gaussian curvature —1 with unit normal
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vector field v, and (u,v) the asymptotic Chebyshev net with
(6.2), We set
(6.5)

1 0 1 0
€1 =  sec i(fu + fo), e2:= 5 o8¢ 5(_fu +fu), ez=v.
Then one can easily see that
(6.6) G := (e1,e,e3)

is an orthogonal matrix for each (u,v). We call G the orthonor-
mal frame associated to the Chebyshev net (u,v).

Lemma 6.7. The orthonormal frame (6.6) satisfies

oG oG
(6.7) ou gu, Ov gV,

)

1 0 0. sm%
U=-= -0, 0 cosg |

—sing  —cosg 0

1 0 —0, sin%

V = 3 0, 0 —cosg

—sin? cos? 0

2 2

Proof. Direct computations from (6.5) and Theorem 2.5. More-
over, the integrability condition U, —V,, = UV — VU (cf. (4.4))
is equivalent to the sine-Gordon equation 6,, = sin6. O

Extension of constant negative curvature surfaces. The
advantage of (6.7) is that it is valid even if ¢ = 0 (mod 7). Thus,
we have
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Theorem 6.8. Let 6: D — R3 be a smooth function on an
simply connected domain D in the uv-plane satisfying the sine-
Gordon equation (6.3). Then their exists a smooth map f: D —
R3 and v: D — S? C R? such that

(6.8) fuv=0, fo-v=0, (v-v=1),

and

ds* :=df - df = du® +2cosf dudv + dv?,

(6.9) .
Il := —dv - df = 2sinf dudv.

Moreover, f is an immersion of constant Gaussian curvature
—1 on the regions {(u,v) |6(u,v) £ 0 (mod 7)}.

Proof. Since sine-Gordon equation is the integrability condition
for (6.7). So there exists a solution G with the initial condition
G(Py) = I, where I is the identity matrix. Since both U and
V' are skew symmetric matrices, G takes its values the set of
orthogonal matrices. In fact, one can easily show

(G'G)u = (G'G)y = O.
Let G = (e, ez, e3). Then by the equation (6.7), the R3-valued
1-form

w = COS261 Sln262 U C08261 Sln262 v

is closed, that is, dw = 0. Then by the Poincaré Lemma (Corol-
lary 4.7), there exists f: D — R3 with df = w. This f is the
desired one. O
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Remark 6.9. Though the map f: D — R? has singular points
on the set ¥ := {(u,v) € D|6(u,v) = 0 (mod =)}, the unit
normal vector field v = e3 is defined on ¥. A map f: D — R3
is said to be a frontal if there exists a unit normal vector field
v: D — S? that is, v satisfies (6.8). Moreover, if a smooth map
(f,v): D — R? x S? is an immersion, f is called a front of a
wave front. Various differential geometric properties for wave
fronts are treated in [6-3], and will be treated in [6-2].

In these terms, our f in Theorem 6.8 is a front, because
ds? + III = 2(du? + dv?) is positive definite, that is, (f,v) is an
immersion.

Ezample 6.10. The constant function 6(u,v) = 0 satisfies the
sine-Gordon equation (6.3). Then

1 0 0
G:=10 cos(u—v) —sin(u—wv)
0 sin(u—v) cos(u — v)

is the solution of (6.7) with G(0,0) = I. The corresponding map
f is obtained as f(u,v) = (u+wv,0,0), that is, the image of f is
the z-axis in R3. All points on the uv-plane are singular points.
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Ezxercises

6-1" Consider the equation

p—10

2
) (=0 =2asm 270 (or0), = Zsin

for an unknown ¢, where § = 6(u, v) is a given function.

(1) Prove that, if 6 satisfies the sine-Gordon equation
(6.3), ¢ satisfies the sine Gordon equation, too.

(2) Find the general solution ¢ of (*) for § = 0.



