6 Surfaces of constant negative curvaturethe sine Gordon equation

Surfaces of constant negative curvature. As a corollary to Theorem 5.9 (the existence of asymptotic Chebyshev net) and the fundamental theorem for surface theory (Theorem 4.1), we have
Theorem 6.1. For a function $\theta=\theta(u, v)$ defined on a simply connected region D on \mathbb{R}^{2} satisfying $\theta_{u v}=\sin \theta$ and

$$
\begin{equation*}
\theta(u, v) \in(0, \pi) \quad((u, v) \in D) \tag{6.1}
\end{equation*}
$$

there exists a unique immersion $f: D \rightarrow \mathbb{R}^{3}$ (up to congruence of \mathbb{R}^{3}) with first and second fundamental forms as
(6.2) $\quad d s^{2}=d u^{2}+2 \cos \theta d u d v+d v^{2}, \quad I I=2 \sin \theta d u d v$.

Conversely, any surfaces in \mathbb{R}^{3} with constant curvature -1 is obtained in this way.

As mentioned in Section 5, the equation

$$
\begin{equation*}
\theta_{u v}=\sin \theta . \tag{6.3}
\end{equation*}
$$

Theorem 6.1 claims that the solutions of the sine-Gordon equation with
Example 6.2. Let
$\frac{(6.4)}{20 .} \quad \theta(u, v)=4 \tan ^{-1} \exp (u+v)$.

[^0]Then one can easily see that it satisfies the sine-Gordon equation, and satisfies (6.1) on a domain $D=\{(u, v) \mid u+v<0\}$.

If we set $\xi:=u-v, \eta:=u+v$, the first and second fundamental forms can be written as

$$
d s^{2}=\frac{1}{\cosh ^{2} \xi}\left(d \xi^{2}+\sinh ^{2} \eta d \eta^{2}\right), \quad I I=\frac{\tanh \eta}{\cosh \eta}\left(-d \xi^{2}+d \eta^{2}\right)
$$

which coincide with the fundamental forms of the pseudosphere (Problem 1-1):

$$
f(\xi, \eta)=\left(\frac{\cos \xi}{\cosh \eta}, \frac{\sin \xi}{\cosh \eta}, \eta-\tanh \eta\right) .
$$

The third fundamental form and the flat structure. Let $f: D \rightarrow \mathbb{R}^{3}$ be an immersion and $\nu: D \rightarrow S^{2} \subset \mathbb{R}^{3}$ its unit normal vector field, where S^{2} is considered as the set of unit vectors of \mathbb{R}^{3}.

Definition 6.3. The third fundamental form of f is the metric on D induced by the map ν :

$$
I I I:=d \nu \cdot d \nu:=\left(\nu_{u} \cdot \nu_{u}\right) d u^{2}+2\left(\nu_{u} \cdot \nu_{v}\right) d u d v+\left(\nu_{v} \cdot \nu_{v}\right) d v^{2}
$$

where (u, v) is a local coordinate system on D.
Lemma 6.4. The third fundamental form satisfies

$$
I I I-2 H I I+K d s^{2}=0
$$

where H and K are the mean and the Gauss curvatures of f, and $d s^{2}$ and II are the first fundamental forms, respectively.

Proof. Fix a local coordinate system (u, v) and let \widehat{I} and $\widehat{I I}$ be the first and second fundamental matrices, respectively. Then the Weingarten matrix A is defined as $A:=\widehat{I}^{-1} \widehat{I}$. Here, by the Weingarten formula (Theorem 2.1), it holds that

$$
\left(\nu_{u}, \nu_{v}\right)=-\left(f_{u}, f_{v}\right) A
$$

Then the matrix representation (the third fundamental matrix) of $\widehat{I I I}$ is computed as

$$
\begin{aligned}
\widehat{I I I} & =\binom{{ }^{t} \nu_{u}}{{ }^{t} \nu_{v}}\left(\nu_{u}, \nu_{v}\right)={ }^{t} A\binom{{ }^{t} f_{u}}{{ }_{t} f_{v}}\left(f_{u}, f_{v}\right) A \\
& ={ }^{t} \widehat{I I}^{t} \widehat{I}^{-1} \widehat{I} \widehat{I}^{-1} \widehat{I I}=\widehat{I I} \widehat{I}^{-1} \widehat{I I}=\widehat{I}\left(\widehat{I}^{-1} \widehat{I I}\right)^{2}=\widehat{I} A^{2} .
\end{aligned}
$$

On the other hand, by the Cayley-Hamilton formula we have

$$
A^{2}-(\operatorname{tr} A) A+(\operatorname{det} A) I=A^{2}-2 H A+K I=O
$$

where I and O are the 2×2 identity matrix and the zero matrix, respectively. Thus, we have

$$
O=\widehat{I} A^{2}-2 H \widehat{I} A+K \widehat{I} \widehat{I I I}-2 H \widehat{I I}+K \widehat{I}
$$

and hence we have the conclusion.
Theorem 6.5. Let $f: D \rightarrow \mathbb{R}^{3}$ be an immersion with constant Gaussian curvature -1 , and let ν be its unit normal vector field. Then $d s^{2}+$ III is a flat metric, that is, a Riemann metric of constant Gaussian curvature 0.

Proof. Take the asymptotic Chebyshev net (u, v) as

$$
d s^{2}=d u^{2}+2 \cos \theta d u d v+d v^{2}, \quad I I=2 \sin \theta d u d v
$$

Then the Weingarten matrix is expressed as

$$
A=\left(\begin{array}{cc}
1 & \cos \theta \\
\cos \theta & 1
\end{array}\right)^{-1}\left(\begin{array}{cc}
0 & \sin \theta \\
\sin \theta & 0
\end{array}\right)=\left(\begin{array}{rr}
-\cot t & \csc t \\
\csc t & -\cot t
\end{array}\right)
$$

and thus the mean curvature H is $-\cot t$. Thus, by Lemma 6.4,

$$
\widehat{I I I}=-2 \cot t \widehat{I I}+\widehat{I}=\left(\begin{array}{cc}
1 & -\cos \theta \\
-\cos \theta & 1
\end{array}\right)
$$

Hence

$$
\widehat{I}+\widehat{I I I}=2 I
$$

that is, $d s^{2}+I I I=2\left(d u^{2}+d v^{2}\right)$ which is a flat metric.
Remark 6.6. It is known that a complete, simply connected flat (with zero Gaussian curvature) Riemannian manifold ($M, d s^{2}$) is isometric to \mathbb{R}^{2} with the canonical metric. We consider a complete immersion $f: M \rightarrow \mathbb{R}^{3}$ with constant Gaussian curvature. Since the induced metric $d s^{2}$ is complete, so is $d \sigma^{2}:=d s^{2}+I I I$. Then the universal cover ($\left.\widetilde{M}, d \tilde{\sigma}^{2}\right)$ of $\left(M, d \sigma^{2}\right)$ is isometric to the Euclidean plane.

Equations for the orthonormal frame. Let $f: D \rightarrow \mathbb{R}^{3}$ be a surface of constant Gaussian curvature -1 with unit normal
vector field ν, and (u, v) the asymptotic Chebyshev net with (6.2), We set
(6.5)
$\boldsymbol{e}_{1}:=\frac{1}{2} \sec \frac{\theta}{2}\left(f_{u}+f_{v}\right), \quad \boldsymbol{e}_{2}:=\frac{1}{2} \csc \frac{\theta}{2}\left(-f_{u}+f_{v}\right), \quad \boldsymbol{e}_{3}:=\nu$.
Then one can easily see that

$$
\begin{equation*}
\mathcal{G}:=\left(e_{1}, e_{2}, e_{3}\right) \tag{6.6}
\end{equation*}
$$

is an orthogonal matrix for each (u, v). We call \mathcal{G} the orthonormal frame associated to the Chebyshev net (u, v).
Lemma 6.7. The orthonormal frame (6.6) satisfies
(6.7) $\frac{\partial \mathcal{G}}{\partial u}=\mathcal{G} U, \quad \frac{\partial \mathcal{G}}{\partial v}=\mathcal{G} V$,

$$
\begin{aligned}
U & =\frac{1}{2}\left(\begin{array}{ccc}
0 & \theta_{u} & \sin \frac{\theta}{2} \\
-\theta_{u} & 0 & \cos \frac{\theta}{2} \\
-\sin \frac{\theta}{2} & -\cos \frac{\theta}{2} & 0
\end{array}\right), \\
V & =\frac{1}{2}\left(\begin{array}{ccc}
0 & -\theta_{u} & \sin \frac{\theta}{2} \\
\theta_{v} & 0 & -\cos \frac{\theta}{2} \\
-\sin \frac{\theta}{2} & \cos \frac{\theta}{2} & 0
\end{array}\right) .
\end{aligned}
$$

Proof. Direct computations from (6.5) and Theorem 2.5. Moreover, the integrability condition $U_{v}-V_{u}=U V-V U$ (cf. (4.4)) is equivalent to the sine-Gordon equation $\theta_{u v}=\sin \theta$.

Extension of constant negative curvature surfaces. The advantage of (6.7) is that it is valid even if $\theta \equiv 0(\bmod \pi)$. Thus, we have

Theorem 6.8. Let $\theta: D \rightarrow \mathbb{R}^{3}$ be a smooth function on an simply connected domain D in the uv-plane satisfying the sineGordon equation (6.3). Then their exists a smooth map $f: D \rightarrow$ \mathbb{R}^{3} and $\nu: D \rightarrow S^{2} \subset \mathbb{R}^{3}$ such that

$$
\begin{equation*}
f_{u} \cdot \nu=0, \quad f_{v} \cdot \nu=0, \quad(\nu \cdot \nu=1) \tag{6.8}
\end{equation*}
$$

and

$$
\begin{align*}
d s^{2} & :=d f \cdot d f=d u^{2}+2 \cos \theta d u d v+d v^{2} \\
I I & :=-d \nu \cdot d f=2 \sin \theta d u d v \tag{6.9}
\end{align*}
$$

Moreover, f is an immersion of constant Gaussian curvature -1 on the regions $\{(u, v) \mid \theta(u, v) \not \equiv 0(\bmod \pi)\}$.
Proof. Since sine-Gordon equation is the integrability condition for (6.7). So there exists a solution \mathcal{G} with the initial condition $\mathcal{G}\left(\mathrm{P}_{0}\right)=I$, where I is the identity matrix. Since both U and V are skew symmetric matrices, \mathcal{G} takes its values the set of orthogonal matrices. In fact, one can easily show

$$
\left(\mathcal{G}^{t} \mathcal{G}\right)_{u}=\left(\mathcal{G}^{t} \mathcal{G}\right)_{v}=O
$$

Let $\mathcal{G}=\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right)$. Then by the equation (6.7), the \mathbb{R}^{3}-valued 1-form

$$
\omega:=\left(\cos \frac{\theta}{2} \boldsymbol{e}_{1}-\sin \frac{\theta}{2} \boldsymbol{e}_{2}\right) d u+\left(\cos \frac{\theta}{2} \boldsymbol{e}_{1}+\sin \frac{\theta}{2} \boldsymbol{e}_{2}\right) d v
$$

is closed, that is, $d \omega=0$. Then by the Poincaré Lemma (Corollary 4.7), there exists $f: D \rightarrow \mathbb{R}^{3}$ with $d f=\omega$. This f is the desired one.

Remark 6．9．Though the map $f: D \rightarrow \mathbb{R}^{3}$ has singular points on the set $\Sigma:=\{(u, v) \in D \mid \theta(u, v) \equiv 0(\bmod \pi)\}$ ，the unit normal vector field $\nu=e_{3}$ is defined on Σ ．A map $f: D \rightarrow \mathbb{R}^{3}$ is said to be a frontal if there exists a unit normal vector field $\nu: D \rightarrow S^{2}$ ，that is，ν satisfies（6．8）．Moreover，if a smooth map $(f, \nu): D \rightarrow \mathbb{R}^{3} \times S^{2}$ is an immersion，f is called a front of a wave front．Various differential geometric properties for wave fronts are treated in［6－3］，and will be treated in［6－2］．

In these terms，our f in Theorem 6.8 is a front，because $d s^{2}+I I I=2\left(d u^{2}+d v^{2}\right)$ is positive definite，that is，(f, ν) is an immersion．
Example 6．10．The constant function $\theta(u, v)=0$ satisfies the sine－Gordon equation（6．3）．Then

$$
\mathcal{G}:=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (u-v) & -\sin (u-v) \\
0 & \sin (u-v) & \cos (u-v)
\end{array}\right)
$$

is the solution of（6．7）with $\mathcal{G}(0,0)=I$ ．The corresponding map f is obtained as $f(u, v)=(u+v, 0,0)$ ，that is，the image of f is the x－axis in \mathbb{R}^{3} ．All points on the $u v$－plane are singular points．

References

［6－1］井ノ口順一，曲面と可積分系一現代基礎数学 18 ，朝含書店，2015．
［6－2］梅原雅顕，幾何学特論（MCST504），第2クォーター，月曜日 $5 / 6$ 時限•木曜日 $5 / 6$ 時限
［6－3］梅原雅顕，特異点をもつ曲線と曲面の幾何学，Seminar on Mathematical Sciences，38，慶應義塾大学， 2009.
［6－4］梅原雅顕•山田光太郎：曲線と曲面一微分幾何的アプローチ（改訂版），裳華房， 2014.

Exercises

$6-\mathbf{1}^{\mathrm{H}}$ Consider the equation
$\left(^{*}\right) \quad(\varphi-\theta)_{u}=2 a \sin \frac{\varphi+\theta}{2}, \quad(\varphi+\theta)_{v}=\frac{2}{a} \sin \frac{\varphi-\theta}{2}$
for an unknown φ ，where $\theta=\theta(u, v)$ is a given function．
（1）Prove that，if θ satisfies the sine－Gordon equation （6．3），φ satisfies the sine Gordon equation，too．
（2）Find the general solution φ of $\left(^{*}\right)$ for $\theta=0$ ．

[^0]: 20. May, 2016.
