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6 Surfaces of constant negative curvature—
the sine Gordon equation

Surfaces of constant negative curvature. As a corollary
to Theorem 5.9 (the existence of asymptotic Chebyshev net)
and the fundamental theorem for surface theory (Theorem 4.1),
we have

Theorem 6.1. For a function θ = θ(u, v) defined on a simply
connected region D on R2 satisfying θuv = sin θ and

(6.1) θ(u, v) ∈ (0, π)
(
(u, v) ∈ D

)

there exists a unique immersion f : D → R3 (up to congruence
of R3) with first and second fundamental forms as

(6.2) ds2 = du2 + 2 cos θ du dv + dv2, II = 2 sin θ du dv.

Conversely, any surfaces in R3 with constant curvature −1 is
obtained in this way.

As mentioned in Section 5, the equation

(6.3) θuv = sin θ.

Theorem 6.1 claims that the solutions of the sine-Gordon equa-
tion with

Example 6.2. Let

(6.4) θ(u, v) = 4 tan−1 exp(u + v).
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Then one can easily see that it satisfies the sine-Gordon equa-
tion, and satisfies (6.1) on a domain D = {(u, v) | u + v < 0}.

If we set ξ := u − v, η := u + v, the first and second funda-
mental forms can be written as

ds2 =
1

cosh2 ξ
(dξ2 + sinh2 η dη2), II =

tanh η

cosh η
(−dξ2 + dη2),

which coincide with the fundamental forms of the pseudosphere
(Problem 1-1):

f(ξ, η) =

(
cos ξ

cosh η
,

sin ξ

cosh η
, η − tanh η

)
.

The third fundamental form and the flat structure. Let
f : D → R3 be an immersion and ν : D → S2 ⊂ R3 its unit
normal vector field, where S2 is considered as the set of unit
vectors of R3.

Definition 6.3. The third fundamental form of f is the metric
on D induced by the map ν:

III := dν · dν := (νu · νu) du2 + 2(νu · νv) du dv + (νv · νv) dv2,

where (u, v) is a local coordinate system on D.

Lemma 6.4. The third fundamental form satisfies

III − 2HII + K ds2 = 0,

where H and K are the mean and the Gauss curvatures of f ,
and ds2 and II are the first fundamental forms, respectively.
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Proof. Fix a local coordinate system (u, v) and let Î and ÎI be
the first and second fundamental matrices, respectively. Then
the Weingarten matrix A is defined as A := Î −1 ÎI . Here, by
the Weingarten formula (Theorem 2.1), it holds that

(νu, νv) = −(fu, fv)A.

Then the matrix representation (the third fundamental matrix)

of ÎII is computed as

ÎII =

(
tνu
tνv

)
(νu, νv) = tA

(
tfu
tfv

)
(fu, fv)A

=
t
ÎI

t
Î −1 Î Î −1 ÎI = ÎI Î −1 ÎI = Î

(
Î −1 ÎI

)2

= Î A2.

On the other hand, by the Cayley-Hamilton formula we have

A2 − (trA)A + (det A)I = A2 − 2HA + KI = O,

where I and O are the 2×2 identity matrix and the zero matrix,
respectively. Thus, we have

O = Î A2 − 2H Î A + K Î ÎII − 2H ÎI + K Î ,

and hence we have the conclusion.

Theorem 6.5. Let f : D → R3 be an immersion with constant
Gaussian curvature −1, and let ν be its unit normal vector field.
Then ds2 + III is a flat metric, that is, a Riemann metric of
constant Gaussian curvature 0.

Sect. 6 (20160527) 44

Proof. Take the asymptotic Chebyshev net (u, v) as

ds2 = du2 + 2 cos θ du dv + dv2, II = 2 sin θ du dv.

Then the Weingarten matrix is expressed as

A =

(
1 cos θ

cos θ 1

)−1(
0 sin θ

sin θ 0

)
=

(
− cot t csc t

csc t − cot t

)
,

and thus the mean curvature H is − cot t. Thus, by Lemma 6.4,

ÎII = −2 cot t ÎI + Î =

(
1 − cos θ

− cos θ 1

)
.

Hence

Î + ÎII = 2I,

that is, ds2 + III = 2(du2 + dv2) which is a flat metric.

Remark 6.6. It is known that a complete, simply connected flat
(with zero Gaussian curvature) Riemannian manifold (M, ds2)
is isometric to R2 with the canonical metric. We consider a com-
plete immersion f : M → R3 with constant Gaussian curvature.
Since the induced metric ds2 is complete, so is dσ2 := ds2 + III.
Then the universal cover (M̃, dσ̃2) of (M, dσ2) is isometric to
the Euclidean plane.

Equations for the orthonormal frame. Let f : D → R3 be
a surface of constant Gaussian curvature −1 with unit normal
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vector field ν, and (u, v) the asymptotic Chebyshev net with
(6.2), We set
(6.5)

e1 :=
1

2
sec

θ

2
(fu + fv), e2 :=

1

2
csc

θ

2
(−fu + fv), e3 := ν.

Then one can easily see that

(6.6) G := (e1, e2, e3)

is an orthogonal matrix for each (u, v). We call G the orthonor-
mal frame associated to the Chebyshev net (u, v).

Lemma 6.7. The orthonormal frame (6.6) satisfies

(6.7)
∂G
∂u

= GU,
∂G
∂v

= GV,

U =
1

2




0 θu sin θ
2

−θu 0 cos θ
2

− sin θ
2 − cos θ

2 0


 ,

V =
1

2




0 −θu sin θ
2

θv 0 − cos θ
2

− sin θ
2 cos θ

2 0


 .

Proof. Direct computations from (6.5) and Theorem 2.5. More-
over, the integrability condition Uv − Vu = UV − V U (cf. (4.4))
is equivalent to the sine-Gordon equation θuv = sin θ.

Extension of constant negative curvature surfaces. The
advantage of (6.7) is that it is valid even if θ ≡ 0 (mod π). Thus,
we have
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Theorem 6.8. Let θ : D → R3 be a smooth function on an
simply connected domain D in the uv-plane satisfying the sine-
Gordon equation (6.3). Then their exists a smooth map f : D →
R3 and ν : D → S2 ⊂ R3 such that

(6.8) fu · ν = 0, fv · ν = 0, (ν · ν = 1),

and

(6.9)
ds2 := df · df = du2 + 2 cos θ du dv + dv2,

II := −dν · df = 2 sin θ du dv.

Moreover, f is an immersion of constant Gaussian curvature
−1 on the regions {(u, v) | θ(u, v) ̸≡ 0 (mod π)}.
Proof. Since sine-Gordon equation is the integrability condition
for (6.7). So there exists a solution G with the initial condition
G(P0) = I, where I is the identity matrix. Since both U and
V are skew symmetric matrices, G takes its values the set of
orthogonal matrices. In fact, one can easily show

(GtG)u = (GtG)v = O.

Let G = (e1,e2, e3). Then by the equation (6.7), the R3-valued
1-form

ω :=

(
cos

θ

2
e1 − sin

θ

2
e2

)
du +

(
cos

θ

2
e1 + sin

θ

2
e2

)
dv

is closed, that is, dω = 0. Then by the Poincaré Lemma (Corol-
lary 4.7), there exists f : D → R3 with df = ω. This f is the
desired one.
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Remark 6.9. Though the map f : D → R3 has singular points
on the set Σ := {(u, v) ∈ D | θ(u, v) ≡ 0 (mod π)}, the unit
normal vector field ν = e3 is defined on Σ. A map f : D → R3

is said to be a frontal if there exists a unit normal vector field
ν : D → S2, that is, ν satisfies (6.8). Moreover, if a smooth map
(f, ν) : D → R3 × S2 is an immersion, f is called a front of a
wave front. Various differential geometric properties for wave
fronts are treated in [6-3], and will be treated in [6-2].

In these terms, our f in Theorem 6.8 is a front, because
ds2 + III = 2(du2 + dv2) is positive definite, that is, (f, ν) is an
immersion.

Example 6.10. The constant function θ(u, v) = 0 satisfies the
sine-Gordon equation (6.3). Then

G :=




1 0 0
0 cos(u − v) − sin(u − v)
0 sin(u − v) cos(u − v)




is the solution of (6.7) with G(0, 0) = I. The corresponding map
f is obtained as f(u, v) = (u + v, 0, 0), that is, the image of f is
the x-axis in R3. All points on the uv-plane are singular points.
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Exercises

6-1H Consider the equation

(*) (φ − θ)u = 2a sin
φ + θ

2
, (φ+θ)v =

2

a
sin

φ − θ

2

for an unknown φ, where θ = θ(u, v) is a given function.

(1) Prove that, if θ satisfies the sine-Gordon equation
(6.3), φ satisfies the sine Gordon equation, too.

(2) Find the general solution φ of (*) for θ = 0.


