5 The Asymptotic Chebyshev Nets

Asymptotic directions. Let $f: \mathbb{R}^{2} \supset D \rightarrow \mathbb{R}^{3}$ be an immersion and fix $\mathrm{P}=\left(u_{0}, v_{0}\right) \in D$. Consider a curve $\gamma(t)=$ $f(u(t), v(t))$ with $\gamma(0)=f(\mathrm{P})$. We define the normal curvature of $\gamma(t)$ at P as

$$
\begin{equation*}
\kappa_{n}(\gamma, \mathrm{P}):=\left(\frac{\ddot{\gamma}(0)}{|\dot{\gamma}(0)|^{2}}\right) \cdot \nu(\mathrm{P}) \tag{5.1}
\end{equation*}
$$

where ν is the unit normal vector field of f.
Under the situations above, we have

$$
\begin{equation*}
\kappa_{n}(\gamma, \mathrm{P}):=\frac{L \dot{u}^{2}+2 M \dot{u} \dot{v}+N \dot{v}^{2}}{E \dot{u}^{2}+2 F \dot{u} \dot{v}+G \dot{v}^{2}} \tag{5.2}
\end{equation*}
$$

where E, F, G, L, M, and N are the entry of the first and second fundamental forms, which are evaluated at P , and $(\dot{u}, \dot{v})=$ $(\dot{u}(0), \dot{v}(0))$.

In fact, by the chain rule, we have

$$
\begin{aligned}
& \dot{\gamma}(0)=\left.\frac{d}{d t}\right|_{t=0} f(u(t), v(t))=f_{u} \dot{u}+f_{v} \dot{v}, \\
& \ddot{\gamma}(0)=f_{u} \ddot{u}+f_{v} \ddot{v}+f_{u u} \dot{u}^{2}+2 f_{u v} \dot{u} \dot{v}+f_{v v} \dot{v}^{2}
\end{aligned}
$$

where \dot{u}, \ddot{u} etc. are evaluated at $t=0$, and $f_{u}, f_{u u}$ etc. are evaluated at P. Since f_{u} and f_{v} are perpendicular to ν and $L=f_{u u} \cdot \nu$, etc, we have (5.2). By (5.2), the normal curvature

[^0]at P depends only on the velocity vector $\boldsymbol{v}=\dot{\gamma}(0)$ of $\gamma(t)$ at P . Moreover, it depends only on the direction of \boldsymbol{v}. So we write
\[

$$
\begin{equation*}
\kappa_{n}(\boldsymbol{v}):=\kappa_{n}(\gamma, \mathrm{P}), \quad \boldsymbol{v}=\dot{\gamma}(0) \tag{5.3}
\end{equation*}
$$

\]

Theorem 5.1 (Proposition 9.5 in [5-1]). The maximum and minimum of the normal curvature at P are the principal curvatures.

Proof. Since $\kappa_{n}(\boldsymbol{v})$ depends only the direction of \boldsymbol{v}, then it can be considered as a function defined on S^{1}. Then it has the maximum and minimum. By (5.2), the maximum and minimum of κ_{n} are the maximum and minimum of

$$
\begin{aligned}
& h(\alpha, \beta):=L \alpha^{2}+2 M \alpha \beta+N \beta^{2} \quad \text { under the condition } \\
& g(\alpha, \beta):=E \alpha^{2}+2 F \alpha \beta+G \beta^{2}=1 .
\end{aligned}
$$

Let λ be the Lagrange multiplier. Then if κ_{n} takes maximum or minimum at $(\alpha, \beta)(\neq(0,0)),(h-\lambda g)_{\alpha}=(h-\lambda g)_{\beta}=0$:
$(L-\lambda E) \alpha+(M-\lambda F) \beta=0, \quad(M-\lambda F) \alpha+(N-\lambda G) \beta=0$.
This system admit a solution $(\alpha, \beta) \neq(0,0)$ if and only if

$$
\operatorname{det}\left(\begin{array}{cc}
L-\lambda E & M-\lambda F \tag{5.4}\\
M-\lambda F & N-\lambda G
\end{array}\right)=0
$$

and in this case, $\lambda=\kappa_{n}$ is the maximum or minimum of $\kappa_{n}(\boldsymbol{v})$. Since (5.4) holds if and only if

$$
\operatorname{det}\left[\left(\begin{array}{cc}
E & F \\
F & G
\end{array}\right)^{-1}\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right)-\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right)\right]=0
$$

that is, λ is an eigenvalue of A as in (1.13). Hence the maximum and minimum of κ_{n} are the principal curvatures.
Corollary 5.2. If the Gaussian curvature K is negative at P , there exists two linearly independent directions \boldsymbol{v}_{1} and \boldsymbol{v}_{2} of the tangent space at P such that $\kappa_{n}\left(\boldsymbol{v}_{j}\right)=0$.
Proof. Since $K(\mathrm{P})<0$, the principal curvatures λ_{1} and λ_{2}, the maximum and the minimum of $\kappa_{n}(\boldsymbol{v})$, have opposite signs.

Definition 5.3. The directions \boldsymbol{v}_{1} and \boldsymbol{v}_{2} as in Corollary 5.2 is called the asymptotic directions.
Fact 5.4 (Theorem 9.9, Figure 8.1 in [5-1]). At a point P with $K(\mathrm{P})<0$, the intersection of the surface and the tangent plane of the surface at P consists of two curves intersecting at P , and the tangent directions of these curves are the asymptotic directions.

Fact 5.5 (Theorem B-5.4 in [5-1]). Let P be a point on the surface with $K(\mathrm{P})<0$. Then there exists a local parameter (u, v) on a neighborhood U of P such that the u-direction and v-direction are the asymptotic directions on each point U.
Definition 5.6. The coordinate system as in Fact 5.5 is called the asymptotic coordinate system.

Proposition 5.7. A parameter (u, v) of the surface is asymptotic coordinate system if and only if the second fundamental form is in the form

$$
I I=2 M d u d v
$$

that is, $L=N=0$.

Proof. Let $\mathrm{P}=\left(u_{0}, v_{0}\right)$. Then the normal curvature of the u direction (resp. the v-direction) is $\left(f_{u u} /\left|f_{u}\right|^{2}\right) \cdot \nu=L / E$ (resp. $\left.\left(f_{v v} /\left|f_{v}\right|^{2}\right) \cdot \nu=N / G\right)$. The coordinate system (u, v) is asymptotic if and only if these two normal curvatures vanish, that is, $L=N=0$.

Example 5.8. Consider a parabolic hyperboloid $z=\frac{1}{2}\left(x^{2}-y^{2}\right)$. Since this surface is parametrized as $(x, y) \mapsto\left(x, y, \frac{1}{2}\left(x^{2}-y^{2}\right)\right)$, the first and second fundamental forms are
$d s^{2}=\left(1+x^{2}\right) d x^{2}-2 x y d x d y+\left(1+y^{2}\right) d y^{2}, \quad I I=\frac{d x^{2}-d y^{2}}{\sqrt{1+x^{2}+y^{2}}}$.
Since $d x^{2}-d y^{2}=(d x+d y)(d x-d y)=d(x+y) d(x-y)$, the parameter change $u=x+y, v=x-y$ yields

$$
I I=\frac{d u d v}{\sqrt{1+\frac{1}{2} u^{2}+\frac{1}{2} v^{2}}}
$$

Hence (u, v) is the asymptotic coordinate system. The surface is represented by

$$
(u, v) \longmapsto\left(\frac{u+v}{2}, \frac{u-v}{2}, \frac{u v}{2}\right)
$$

Asymptotic Chebyshev net.

Theorem 5.9. Let $f: \Sigma \rightarrow \mathbb{R}^{3}$ be an immersion of 2-dimensional manifold Σ into the Euclidean 3-space, whose Gaussian curvature is -1 . Then for each point P , there exists a local coordinate
system (u, v) on a neighborhood of P such that the first and sec－ ond fundamental forms are represented by
（5．5）$\quad d s^{2}=d u^{2}+2 \cos \theta d u d v+d v^{2}, \quad I I=2 \sin \theta d u d v$.
Here，θ is a smooth function in (u, v) satisfying

$$
\begin{equation*}
\theta_{u v}=\sin \theta \tag{5.6}
\end{equation*}
$$

The coordinate system (u, v) in Theorem 5.9 is called the asymptotic Chebyshev net and（5．6）is called the sine Gordon equation．Here function θ in（5．5）is the angle between the two asymptotic directions．

Proof．Let (u, v) be an asymptotic coordinate system around P （cf．Fact 5．5）．Then the first and second fundamental forms are in the form

$$
d s^{2}=E d u^{2}+2 F d u d v+G d v^{2}, \quad I I=2 M d u d v
$$

Then by Problem 3－1，the Codazzi equations yield

$$
E_{v}=0, \quad G_{u}=0
$$

Hence E and G depends only on u and v ，respectively：

$$
E=E(u), \quad G=G(v)
$$

Since E and G are positive，there exists a function $\xi=\xi(u)$ ， $\eta=\eta(v)$ such that

$$
\xi_{u}=\sqrt{E(u)}, \quad \eta_{v}=\sqrt{G(v)}
$$

Then (ξ, η) is the desired coordinate system．Then the funda－ mental forms are

$$
d s^{2}=d \xi^{2}+2 \widetilde{F} d \xi d \eta+d \eta^{2}, \quad I I=2 \widetilde{M} d \xi d \eta
$$

Since the Gaussian curvature is -1 ，that is，

$$
K=\frac{-\widetilde{M}^{2}}{1-\widetilde{F}^{2}}=-1
$$

we have

$$
\widetilde{M}^{2}+\widetilde{F}^{2}=1
$$

So there exists a smooth function θ such that $\widetilde{M}=\sin \theta$ and $\widetilde{F}=$ $\cos \theta$ ．Thus we have the desired coordinate system．Moreover， by Problem $2-1, \theta$ satisfies $\theta_{\xi \eta}=\sin \theta$（which is equivalent to the Gauss equation）．

Remark 5．10．The asymptotic Chebyshev net is unique up to the coordinate changes

$$
(u, v) \mapsto(\pm u+a, \pm v+b), \quad(u, v) \mapsto(v, u)
$$

References

［5－1］梅原雅顕•山田光太郎：曲線と曲面—微分幾何的アプローチ（改訂版），裳華房，2014．

Exercises
5-1 Consider a smooth map $f: D \rightarrow \mathbb{R}^{3}$ as (cf. Problem 1-1)

$$
f(u, v)=\left(\frac{\cos u}{\cosh v}, \frac{\sin u}{\cosh v}, v-\tanh v\right),
$$

where $D=\{(u, v) \mid v>0\}$.
(1) Write down the first fundamental and second fundamental forms in terms of (u, v).
(2) Find parameter change $(u, v) \mapsto(\xi, \eta)$ to the asymptotic Chebyshev net (ξ, η).
(3) Find the asymptotic angle $\theta(\xi, \eta)$.

[^0]: 6. May, 2016.
