4 The fundamental theorem for surfaces

We shall give a proof of the following theorem in this section (cf. Appendix B-10 in [4-1]):

Theorem 4.1 (The fundamental theorem for surface theory). Let D be a simply connected domain of \mathbb{R}^{2} and let $E(>0), F$, $G(>0), L, \bar{M}$ and N be a C^{∞}-functions on D satisfying $E G-$ $F^{2}>0$, the Gauss equation (3.3), and the Codazzi equations (3.4). Then there exists an immersion $f: D \rightarrow \mathbb{R}^{3}$ whose first and second fundamental forms are
$d s^{2}=E d u^{2}+2 F d u d v+G d v^{2}, I I=L d u^{2}+2 M d u d v+N d v^{2}$.
Moreover, such an immersion f is unique up to rotations and parallel translations.

Facts on Linear Ordinary Differential Equations.

Theorem 4.2 (The fundamental theorem). Let V be a finite dimensional vector space over \mathbb{R} and denote by $\operatorname{Hom}(V)$ the space of linear transformations on V. Take a C^{∞}-map $A: I \rightarrow \operatorname{Hom} V$ defined on an interval $I \subset \mathbb{R}$. Then for arbitrary t_{0} and $\boldsymbol{v}_{0} \in V$, there exists a unique C^{∞}-map $\boldsymbol{v}: I \rightarrow V$ satisfying

$$
\begin{equation*}
\frac{d \boldsymbol{v}}{d t}(t)=A(t) \boldsymbol{v}(t), \quad \boldsymbol{v}\left(t_{0}\right)=\boldsymbol{v}_{0} \tag{4.1}
\end{equation*}
$$

29. April, 2016. Revised: 06. May, 2016

The equation (4.1) is called an initial value problem of a linear differential equation. ${ }^{4}$ We denote the unique solution of (4.1) by $\boldsymbol{v}_{A, t_{0}, \boldsymbol{v}_{\mathbf{0}}}$.

Theorem 4.3. Under the same notations as in Theorem 4.2, let $A: I \times U \rightarrow \operatorname{Hom}(V)$ and and $\boldsymbol{v}_{0}: I^{\prime} \rightarrow V$ be C^{∞}-maps where I, I^{\prime} are intervals and $U \subset \mathbb{R}^{n}$ is a domain. Then for arbitrarily fixed $t_{0} \in I$,

$$
\mathbb{R}^{3} \supset I \times U \times I^{\prime} \ni(t, \boldsymbol{\alpha}, \beta) \longmapsto \boldsymbol{v}_{A(*, \boldsymbol{\alpha}), t_{0}, \boldsymbol{v}_{0}(\beta)} \in V
$$

is a C^{∞}-map.
Theorem 4.3 is called the regularity of the solutions of ordinary differential equations with respect to parameters and initial conditions.

From now on we denote by $\mathrm{M}(n, \mathbb{R})$ (resp. $\mathrm{GL}(n, \mathbb{R}))$ the vector space consists of the $n \times n$-real matrices (resp. the $n \times n$ regular matrices).
Corollary 4.4. Let $\Omega: I \rightarrow \mathrm{M}(n, \mathbb{R})$ be a C^{∞}-map defined on an interval I. Then for $t_{0} \in I$ and an arbitrary matrix $A_{0} \in \mathrm{M}(n, \mathbb{R})$, there exists a unique C^{∞}-map $\mathcal{F}_{A_{0}}: I \rightarrow \mathrm{M}(n, \mathbb{R})$ satisfying

$$
\begin{equation*}
\frac{d \mathcal{F}}{d t}(t)=\mathcal{F}(t) \Omega(t), \quad \mathcal{F}\left(t_{0}\right)=A_{0} \tag{4.2}
\end{equation*}
$$

Moreover,

[^0]- if $A_{0} \in \mathrm{GL}(n, \mathbb{R})$ then $\mathcal{F}(t) \in \mathrm{GL}(n, \mathbb{R})$, for $t \in I$,
- $\mathcal{F}_{B}=B \mathcal{F}_{\text {id }}$, where id is the $n \times n$-identity matrix and \mathcal{F}_{B} (resp. $\left.\mathcal{F}_{\text {id }}\right)$ is the solution of (4.2) with $A_{0}=B\left(A_{0}=\mathrm{id}\right)$.
Proof. The first part is a direct conclusion of Theorem 4.2 for $V=\mathrm{M}(n, \mathbb{R})$ and $A(t): V \in F \mapsto \Omega(t) F \in V$.

Let \mathcal{F} be the solution of (4.2). Then it holds that,

$$
\frac{d}{d t} \operatorname{det} \mathcal{F}=\operatorname{tr}\left(\widetilde{\mathcal{F}} \frac{d \mathcal{F}}{d t}\right)=\operatorname{tr}(\widetilde{\mathcal{F} \mathcal{F}} \Omega)=\operatorname{det} \mathcal{F} \operatorname{tr}(\Omega)
$$

where $\widetilde{\mathcal{F}}$ is the cofactor matrix of \mathcal{F}. Then $f:=\operatorname{det} \mathcal{F}$ satisfies

$$
\frac{d f}{d t}=f \omega, \quad f\left(t_{0}\right)=a_{0}, \quad \text { where } \omega=\operatorname{tr} \Omega \text { and } a_{0}=\operatorname{det} A_{0}
$$

The unique solution of above equation is

$$
f(t)=a_{0} \exp \left(\int_{t_{0}}^{t} \omega(s) d s\right)
$$

which never vanish if $a_{0} \neq 0$. Final assertion holds by the uniqueness of the solution of (4.2).

Integrable Partial Differential Equations. Let D be a domain in the $u v$-plane \mathbb{R}^{2} and take C^{∞} maps $\Omega, \Lambda: D \rightarrow \mathrm{M}(n, \mathbb{R})$. In this section we consider a system of differential equations of unknown $\mathcal{F}: D \rightarrow \mathrm{M}(n, \mathbb{R})$:
(4.3) $\quad \frac{\partial \mathcal{F}}{\partial u}=\mathcal{F} \Omega, \quad \frac{\partial \mathcal{F}}{\partial v}=\mathcal{F} \Lambda, \quad \mathcal{F}(\mathrm{P})=F_{0} \in \operatorname{GL}(n, \mathbb{R})$,
where $\mathrm{P} \in D$ is a fixed point.

Lemma 4.5. Assume that there exists a solution \mathcal{F} of (4.3). Then $\mathcal{F}(u, v) \in \mathrm{GL}(n, \mathbb{R})$ for any $(u, v) \in D$ and it holds that

$$
\begin{equation*}
\Omega_{v}-\Lambda_{u}=\Omega \Lambda-\Lambda \Omega \tag{4.4}
\end{equation*}
$$

Proof. Fix Q $\in D$ and take a smooth path $\gamma(t)=(u(t), v(t))$ $(0 \leqq t \leqq 1)$ on D joining P and Q . Then $\mathcal{F} \circ \gamma(t):[0,1] \rightarrow$ $\mathrm{M}(n, \mathbb{R})$ satisfies
(4.5) $\quad \frac{d \mathcal{F} \circ \gamma}{d t}(t)=\mathcal{F} \circ \gamma(t) \hat{\Omega}(t), \quad \mathcal{F} \circ \gamma(0)=F_{0} \in \operatorname{GL}(n, \mathbb{R})$,

$$
\hat{\Omega}(t):=\Omega \circ \gamma(t) \dot{u}(t)+\Lambda \circ \gamma(t) \dot{v}(t)
$$

Then Corollary 4.4 implies that $\mathcal{F}(\mathrm{Q}) \in \mathrm{GL}(n, \mathbb{R})$. Since Q is arbitrary, the first assertion holds.

The second assertion can be proven by the same way in the proof of Lemma 3.1.
Theorem 4.6. Let D be a simply connected domain in \mathbb{R}^{2}. Then there exists a unique solution $\mathcal{F}: D \rightarrow \mathrm{M}(n, \mathbb{R})$ of (4.3) if Ω and Λ satisfy (4.4).
Proof. First we shall prove the uniqueness: Let \mathcal{F}_{1} and \mathcal{F}_{2} be the solutions of (4.3). Since the values of \mathcal{F}_{j} are regular matrices (Lemma 4.5), we can set $\mathcal{G}:=\mathcal{F}_{1} \mathcal{F}_{2}^{-1}$. Then by the similar computation in the proof of Corollary 2.6, we have $\mathcal{G}_{u}=\mathcal{G}_{v}=O$, and hence \mathcal{G} is constant on D :

$$
\mathcal{G}(\mathrm{P})=\mathcal{F}_{1}(\mathrm{P}) \mathcal{F}_{2}(\mathrm{P})^{-1}=F_{0} F_{0}^{-1}=\mathrm{id}
$$

Then we have $\mathcal{F}_{1}=\mathcal{F}_{2}$.

Next, we prove the existence. Take $\mathrm{Q} \in D$ arbitrarily and choose a path $\gamma(t)=(u(t), v(t))(0 \leqq t \leqq 1)$ joining P and Q , and consider the ordinary differential equation (4.5). Let $\mathcal{F}_{\gamma}: I \rightarrow \mathrm{GL}(n, \mathbb{R})$ be the unique solution (cf. Corollary 4.4) of (4.5), and set $\mathcal{F}(\gamma, \mathrm{Q}):=\mathcal{F}_{\gamma}(1)$.

We now prove that \mathcal{F} does not depend on the choice of the path γ. Take another path $\tilde{\gamma}$ joining P and Q . Since D is simply connected, they are homotopically equivalent. In other words, we can take a smooth map $\sigma:[0,1] \times[0,1] \rightarrow D$ such that $\sigma(0, t)=\gamma(t), \sigma(1, t)=\tilde{\gamma}(t), \sigma(s, 0)=\mathrm{P}, \sigma(s, 1)=\mathrm{Q}$. We write $\sigma(s, t)=(u(s, t), v(s, t))$ and set

$$
S=\Omega \circ \sigma u_{s}+\Lambda \circ \sigma v_{s}, \quad T=\Omega \circ \sigma u_{t}+\Lambda \circ \sigma v_{t} .
$$

Note that

$$
\begin{equation*}
S(s, 1)=O \quad(0 \leqq s \leqq 1), \tag{4.6}
\end{equation*}
$$

because $\sigma(s, 1)$ is constant. For each fixed $s \in[0,1]$, take the unique solution $\hat{\mathcal{F}}(s, t)$ of the ordinary differential equation
(4.7) $\quad \frac{\partial \hat{\mathcal{F}}(s, t)}{\partial t}=\hat{\mathcal{F}}(s, t) T(s, t), \quad \hat{\mathcal{F}}(s, 0)=F_{0}$.

Then by the regularity of the solution of ordinary differential equation with respect to the parameters, we have a smooth map $\hat{\mathcal{F}}:[0,1] \times[0,1] \rightarrow D$, and by definition,

$$
F_{0}=\hat{\mathcal{F}}(s, 0), \quad \mathcal{F}(\gamma, \mathrm{Q})=\hat{\mathcal{F}}(0,1), \quad \mathcal{F}(\tilde{\gamma}, \mathrm{Q})=\hat{\mathcal{F}}(1,1)
$$

that is, to show that $\mathcal{F}(\gamma, \mathrm{Q})$ does not depend on γ, it is sufficient to show that $\hat{\mathcal{F}}(0,1)=\hat{\mathcal{F}}(1,1)$. Noticing $S_{t}-T_{s}-S T+T S=O$
holds because of (4.4), we have

$$
\begin{aligned}
\left(\hat{\mathcal{F}}_{s}-\hat{\mathcal{F}} S\right)_{t} & =\hat{\mathcal{F}}_{s t}-\hat{\mathcal{F}}_{t} S-\hat{\mathcal{F}} S_{t} \\
& =\hat{\mathcal{F}}_{t s}-\mathcal{F} T S-\mathcal{F} S_{t}=\left(\hat{\mathcal{F}}_{s}-\hat{\mathcal{F}} S\right) T
\end{aligned}
$$

Hence for each fixed $s, \hat{\mathcal{F}}_{s}-\hat{F} S$ is another solution of the same equation (4.7) with the initial condition $\hat{\mathcal{F}}_{s}(s, 0)-\hat{\mathcal{F}}(s, 0) S(s, 0)=$ O. Hence $\hat{\mathcal{F}}_{s}-\hat{\mathcal{F}} S=O$ for $(s, t) \in[0,1] \times[0,1]$. In particular, $\hat{\mathcal{F}}_{s}(s, 1)=\hat{\mathcal{F}}(s, 1) S(s, 1)=O$ and then $\hat{\mathcal{F}}(s, 1)$ is constant.

Thus, by setting $\mathcal{F}(\mathrm{Q}):=\mathcal{F}(\gamma, \mathrm{Q})$, we have the map $\mathcal{F}: D \rightarrow$ $\mathrm{M}(n, \mathbb{R})$. We finally prove that \mathcal{F} satisfies the equation (4.3). Let $\mathrm{Q}=\left(u_{0}, v_{0}\right), \mathrm{Q}_{h}=\left(u_{0}+h, v_{0}\right)$ and set $\gamma(t)=\left(u_{0}+t h, v_{0}\right)$ $(t \in[0,1])$. Then $\mathcal{F}\left(\mathrm{Q}_{h}\right)=\hat{\mathcal{F}}(1)$, where $\hat{\mathcal{F}}$ is a solution of

$$
\frac{d \hat{\mathcal{F}}}{d t}=h \hat{\mathcal{F}} \Omega \circ \gamma(t), \quad \hat{\mathcal{F}}(0)=\mathcal{F}(\mathrm{Q})
$$

Thus, we can show

$$
\mathcal{F}_{u}(\mathrm{Q})=\lim _{h \rightarrow 0} \frac{\mathcal{F}\left(\mathrm{Q}-{ }_{h}\right)-\mathcal{F}(\mathrm{Q})}{h}=\mathcal{F}(\mathrm{Q}) \Omega(\mathrm{Q})
$$

Similarly, we have $\mathcal{F}_{v}=\mathcal{F} \Lambda$.
Corollary 4.7 (Poincaré Lemma). Let $\alpha:=\omega d u+\lambda d v$ be a differential one form on a simply connected domain $D \subset \mathbb{R}^{2}$. If $d \alpha=\left(\lambda_{u}-\omega_{v}\right) d u \wedge d v=0$, there exists a smooth function $f: D \rightarrow \mathbb{R}$ such that $d f=\alpha$.
Proof. Consider the equation $\varphi_{u}=\varphi \omega, \varphi_{v}=\varphi \lambda$ and apply Theorem 4.6 for $n=1$. Letting $f=e^{\varphi}$, we have the desired function.

Proof of Theorem 4．1．The uniqueness is already shown in Corollary 2．6．We show the existence．Consider the equation （3．1）．with initial condition at $\mathrm{P} \in D$

$$
\mathcal{F}(\mathrm{P}):=\left(\begin{array}{ccc}
\sqrt{E_{0}} & F_{0} / \sqrt{E_{0}} & 0 \\
0 & \sqrt{\left(E_{0} G_{0}-F_{0}^{2}\right) / E_{0}} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

where $E_{0}=E(\mathrm{P}), \ldots$ ．Then by Theorem 4．6，there exists the unique solution $\mathcal{F}: D \rightarrow \operatorname{GL}(3, \mathbb{R})$ ．Write $\mathcal{F}=(\omega, \lambda, \nu)$ ． Then by the equation（3．1），$\omega_{v}=\lambda_{u}$ ，that is， \mathbb{R}^{3}－valued one form $\alpha=\omega d u+\lambda d v$ is closed．Then by the Poincaré lemma （Corollary 4．7），there exists a smooth map $f: D \rightarrow \mathbb{R}^{3}$ such that $f_{u}=\omega, f_{v}=\lambda$ ．We show that f is the desired surface．Let
$\mathcal{H}:={ }^{t} \mathcal{F} \mathcal{F}=\left(\begin{array}{ccc}f_{u} \cdot f_{u} & f_{u} \cdot f_{v} & f_{u} \cdot \nu \\ f_{v} \cdot f_{u} & f_{v} \cdot f_{v} & f_{v} \cdot \nu \\ \nu \cdot f_{u} & \nu \cdot f_{v} & \nu \cdot \nu\end{array}\right), \quad\left(\mathcal{F}=\left(f_{u}, f_{v}, \nu\right)\right)$.
Take an arbitrary $\mathrm{Q} \in D$ and a path γ joining P and Q ．Then $\hat{\mathcal{H}}=\mathcal{H} \circ \gamma$ satisfies the linear ordinary equation

$$
\begin{equation*}
\frac{d \hat{\mathcal{H}}}{d t}=^{t} \hat{\Omega} \hat{\mathcal{H}}+\hat{\mathcal{H}} \hat{\Omega} \tag{4.8}
\end{equation*}
$$

where $\hat{\Omega}(t)$ is as in（4．5）．On the other hand，

$$
\hat{\mathcal{H}}_{0}=\mathcal{H}_{0} \circ \gamma, \quad \mathcal{H}_{0}=\left(\begin{array}{ccc}
E & F & 0 \\
F & G & 0 \\
0 & 0 & 1
\end{array}\right)
$$

is a solution of（4．8）with same initial condition as \mathcal{H}（cf．Prob－ lem 4－1）．Thus $\hat{\mathcal{H}}=\hat{\mathcal{H}}_{0}$ by the uniqueness part of Theorem 4.2 ． Since Q is arbitrary，we have

$$
f_{u} \cdot f_{u}=E, f_{u} \cdot f_{v}=F, f_{v} \cdot f_{v}=G, f_{u} \cdot \nu=f_{v} \cdot \nu=0,|\nu|=1 .
$$

Hence the entries of first fundamental form of f is E, F, G and ν is the unit normal vector．Then by（3．1），we can show that the entries of the second fundamental form are L, M and N ．

References

［4－1］梅原雅顕•山田光太郎：曲線と曲面—微分幾何的アプローチ（改訂版），裳華房， 2014.
［4－2］白岩謙一：「力学系の理論」（岩波書店，1974）
［4－3］高野恭一：「新数学講座 6 常微分方程式」（朝倉書店，1994）

Exercises

$4-\mathbf{1}^{\mathrm{H}}$ Let Ω and Λ be as in（3．1）．Prove that

$$
\mathcal{H}:=\left(\begin{array}{ccc}
E & F & 0 \\
F & G & 0 \\
0 & 0 & 1
\end{array}\right)
$$

satisfies the equation

$$
\frac{\partial \mathcal{H}}{\partial u}={ }^{t} \Omega \mathcal{H}+\mathcal{H} \Omega, \quad \frac{\partial \mathcal{H}}{\partial v}={ }^{t} \Lambda \mathcal{H}+\mathcal{H} \Lambda
$$

[^0]: ${ }^{4}$ Compare with the well-known Cauchy's existence theorem. The solution of the linear differential equation is defined on the whole interval I where the coefficient A is defined. See [4-2] and [4-3].

