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2 The Gauss and Weingarten formulae

In this section, we consider an immersion f : R2 ⊃ U → R3 of
the domain U in the uv-plane, and let ν be the unit normal
vector field as

ν :=
fu × fv

|fu × fv| .

Then, for each P = (u, v) ∈ U ,

(2.1) F(u, v) := {fu(u, v), fv(u, v), ν(u, v)}

forms a positive basis of R3. In this lecture, we call F the Gauss
frame of f . In particular, 2-dimensional vector space spanned
by {fu(u, v), fv(u, v)} is the image of TPU by the differential
map:

Span{fu(P), fv(P)} = df(TPU).

We call this vector space by the tangent vector space of the
surface at P. The tangent vector space is characterized as the
orthogonal complement of ν(P), and we have the orthogonal
decomposition

(2.2) R3 =
(
Tf(P)R3

)
= df(TPU) ⊕ RνP.

From now on, we denote by

ds2 = E du2+2F du dv+Gdv2, II = L du2+2M dudv+N dv2

the first and the second fundamental forms, respectively.
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The Weingarten Formula. The following formula mesures
the change of the unit normal vector in terms of the entries of
the fundamental forms (cf. Lemma 8.5 in [2-1] (page 85)):

Theorem 2.1 (The Weingarten Formula). It holds that

{
νu = −A1

1fu − A2
1fv,

νv = −A1
2fu − A2

2fv,
(

A =

(
A1

1 A1
2

A2
1 A2

2

)
=

(
E F
F G

)−1(
L M
M N

))
.

The Christoffel symbols and the Gauss Formula.

Definition 2.2 (The Christoffel symbols, [2-1], page 108). The
following Γ k

ij (i, j, k = 1, 2) are called the Christoffel symbols:

(2.3)





Γ 1
11 :=

GEu − 2FFu + FEv

2(EG − F 2)
,

Γ 2
11 :=

2EFu − EEv − FEu

2(EG − F 2)
,

Γ 1
12 = Γ 1

21 :=
GEv − FGu

2(EG − F 2)
,

Γ 2
12 = Γ 2

21 :=
EGu − FEv

2(EG − F 2)
,

Γ 1
22 :=

2GFv − GGu − FGv

2(EG − F 2)
,

Γ 2
22 :=

EGv − 2FFv + FGu

2(EG − F 2)
.
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By straightforward calculations, we have

Lemma 2.3.

EΓ 1
11 + FΓ 2

11 =
1

2
Eu, FΓ 1

11 + GΓ 2
11 = Fu − 1

2
Ev

EΓ 1
12 + FΓ 2

12 =
1

2
Ev, FΓ 1

12 + GΓ 2
12 =

1

2
Gu,

EΓ 1
22 + FΓ 2

22 = Fv − 1

2
Gu FΓ 1

22 + GΓ 2
22 =

1

2
Gv,

Γ 1
11 + Γ 2

12 =
gu

2g
, Γ 1

21 + Γ 2
22 =

gv

2g
,

where g := EG − F 2.

The Gauss formula ([2-1], Proposition 11.1 in page 122) is
satated using the Christoffel symbols as follows:

Theorem 2.4 (The Gauss Formula). Let f : U ∋ (u, v) 7→
f(u, v) ∈ R3 be an immersion and ν its unit normal vector
field, and let Γ i

jk (i, j, k = 1, 2) and L, M , N be the Christof-
fel symbols and the entries of the second fundamental forms,
respectively. Then it holds taht

(2.4)





fuu = Γ 1
11fu + Γ 2

11fv + Lν,

fuv = Γ 1
12fu + Γ 2

12fv + Mν,

fvv = Γ 1
12fu + Γ 2

12fv + Nν.

The Gauss Frame and the Fundamental Equations. Com-
bining Theorems 2.1 and 2.4, we have the following Fundamental
Equations for surface theory :
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Theorem 2.5. Let f : U ∋ (u, v) 7→ f(u, v) ∈ R3 be an im-
mersion of a domain U in the uv-plane. Then the Gauss frame
F := {fu, fv, ν} as in (??) satisfies the equations

(2.5)
∂F
∂u

= FΩ,
∂F
∂v

= FΛ

Ω :=




Γ 1
11 Γ 1

12 −A1
1

Γ 2
11 Γ 2

12 −A2
1

L M 0


 , Λ :=




Γ 1
21 Γ 1

22 −A1
2

Γ 2
21 Γ 2

22 −A2
2

M N 0


 ,

where Γ i
jk (i, j, k = 1, 2), Ak

l and L, M , N are the Christoffel
symbols, the entries of the Weingarten matrix and the entries
of the second fundamental form, respectively.

Since the coefficient matrices Ω, Λ in (2.5) are expressed in
terms of the first and the second fundamenatal forms, we have
the followoing, which is the “uniquness part” of the fundamental
theorem for surface theory (which will be stated in Section ??):

Corollary 2.6. Let f , f̃ : U → R3 be two immersions of a
domain U ⊂ R2. If the first and the second fundamental forms
of f and f̃ are common, there exist a matrix P ∈ SO(3) and a
vector p ∈ R3 such that

(2.6) f̃ = Pf + p.

In other words, the first and the second fundamental forms de-
termines a surface uniquely up to (orientation preserving) isome-
tries of R3.
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Proof. Let F and F̃ be the Gauss frames of f and f̃ , respec-
tivelymtively. By Theorem 2.5, they astisfy the equation (2.5)
with common coefficient matrices Ω and Λ. Hence

∂

∂u
FF̃−1 = F̃uF−1 + F̃

(
F−1

)
u

= F̃uF−1 − F̃
(
F−1FuF−1

)

= F̃ΩF−1 − F̃ΩF̃−1 = O,

∂

∂v
F̃F−1 = O.

Since the domain D is connected, it follows that F̃F−1 = P , for
some constant matrix P , that is, F̃ = P F̃ holds. Hence

f̃u = Pfu, f̃v = Pfv, ν̃ = Pν

hold, where ν̃ is the unit normal vector field of f̃ . This implies

(f̃ − Pf)u = (f̃ − Pf)v = 0,

and hence f̃ − Pf =: p is a constant vector, which yields (2.6).
So, it is sufficient to show that P ∈ SO(3). Fix P := (u0, v0) ∈ U
and set

f1 = fu(u0, v0), f2 = fv(u0, v0), f3 = ν(u0, v0).

Then

f1 · f1 = E(u0, v0) = f̃u(u0, v0) · f̃u(u0, v0) = Pf1 · Pf1,

and similarly, we have

f j · fk = Pf j · Pfk (j, k = 1, 2, 3).
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Since {f1, f2, f3} forms a basis of R3, we can conclude that

x · y = Px · Py (x,y ∈ R3),

and hence P is a orthogonal matrix. Moreover, both detF and
det F̃ are positive since F and F̃ are positively oriented. Thus,
det P > 0, that is, P ∈ SO(3).

Theorema egregium Differentiate the first (resp. the sec-
ond) equation of (2.4) in v and u, respectively, we obtain

(2.7)
fuuv = (∗) + (Γ 2

11,v + Γ 1
11Γ

2
11 + Γ 2

11Γ
2
12 − LA2

2)fv,

fuvu = (∗) + (Γ 2
12,u + Γ 1

12Γ
2
12 + Γ 2

12Γ
2
22 − MA2

1)fv,

here (∗)’s are linear cobinations of fu and ν. Since fuuv = fuvu,
we have

(2.8) K =
E
(
EvGv − 2FuGv + Gu

2
)

4(EG − F 2)2

+
F (EuGv − EvGu − 2EvFv − 2FuGu + 4FuFv)

4(EG − F 2)2

+
G
(
EuGu − 2EuFv + Ev

2
)

4(EG − F 2)2
− Evv − 2Fuv + Guu

2(EG − F 2)

comparing the coefficients of fv in (2.7) and substituting (2.3),
here K is the Gaussian curvature defined in (1.15). The equal-
ity (2.8) is known as Gauss’ Theorema Egregium (“remarkable
theorem”), cf. Theorem 11.2 of [2-1].
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Exercises

2-1H Assume f : U ∋ (u, v) 7→ f(u, v) ∈ R3 be an immersion
of a domain U in R2, whose first and second fundamental
forms are expressed as

ds2 = du2 + 2 cos θ du dv + dv2, II = 2 sin θ du dv,

where θ(u, v) is a smooth function in (u, v).

(1) Find the condition of θ for f to be an immersion.

(2) Compute the Christoffel symbols.

(3) Write down the equation (2.8) in terms of θ.


