1 A review of the surface theory.

The Euclidean space. We denote by \mathbb{R}^3 the Euclidean 3-space with inner product " \cdot ", that is,

$$oldsymbol{x} \cdot oldsymbol{y} := x_1 y_1 + x_2 y_2 + x_3 y_3 = {}^t oldsymbol{x} oldsymbol{y}, \quad \left(oldsymbol{x} = egin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix}, oldsymbol{y} = egin{pmatrix} y_1 \ y_2 \ y_3 \end{pmatrix}
ight)$$

Here, we consider vectors in \mathbb{R}^3 as column vectors and "t" denotes the *transposition*. The *Euclidean distance* d of \mathbb{R}^3 is defined as $d(\boldsymbol{x}, \boldsymbol{y}) := |\boldsymbol{y} - \boldsymbol{x}|$, where $|\boldsymbol{v}| := \sqrt{\boldsymbol{v} \cdot \boldsymbol{v}}$. An *isometry* of \mathbb{R}^3 , that is, a transformation $F : \mathbb{R}^3 \to \mathbb{R}^3$ preserving the Euclidean distance, has the following form:

(1.1)
$$F(\boldsymbol{x}) = P\boldsymbol{x} + \boldsymbol{b} \qquad P \in O(3), \quad \boldsymbol{b} \in \mathbb{R}^3.$$

Here, we denote

O(3) =the set of 3×3 orthogonal matrices, $SO(3) = \{P \in O(3) \mid \det P = 1\}.$

A basis $\{\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3\}$ of \mathbb{R}^3 is said to be *positive* (resp. *negative*) if det $(\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3)$ is positive (resp. negative). The triple of the column vectors of a matrix in O(3) (resp. SO(3)) forms an *orthonormal basis* (resp. a *positive orthonormal basis*).

An isometry as in (1.1) is called an *orientation preserving* isometry (resp. an *orientation reversing isometry*) if $A \in SO(3)$ (resp. $A \in O(3) \setminus SO(3)$). **Immersed surfaces.** Consider a smooth¹ 2-manifold Σ and a smooth map

(1.2)
$$f: \Sigma \ni \mathbf{P} \longmapsto f(\mathbf{P}) = {}^{t} (x(\mathbf{P}), y(\mathbf{P}), z(\mathbf{P})) \in \mathbb{R}^{3}.$$

Then each component of f is a smooth function defined on Σ . For each point $P \in \Sigma$, we define a liner map $df_P \colon T_P \Sigma \to \mathbb{R}^3$ as

(1.3)
$$df_{\mathcal{P}}(X) := {}^{t} \left(dx_{\mathcal{P}}(X), dy_{\mathcal{P}}(X), dz_{\mathcal{P}}(X) \right) \quad (X \in T_{\mathcal{P}}\Sigma),$$

which is called the *differential* of the map f at P, where dx, dy and dz are the usual differential of smooth functions.

Definition 1.1. A map f as in (1.2) is immersive at P if the map $df_{\rm P}: T_{\rm P}\Sigma \to \mathbb{R}^3$ is injective. Moreover, f is said to be an *immersion* if f is immersive at all ${\rm P} \in \Sigma$. In this lecture, an immersion as (1.2) is called an *immersed surface*.

Let (U, (u, v)) be a local coordinate chart of Σ at P. Then fin (1.2) is considered as an \mathbb{R}^3 -valued function of (u, v), and

$$df\left(\frac{\partial}{\partial u}\right) = f_u = {}^t(x_u, y_u, z_u), \qquad df\left(\frac{\partial}{\partial v}\right) = f_v.$$

In particular, the image of $df_{(u,v)}$ is spanned by $f_u(u,v)$, $f_v(u,v)$. Thus, we have

Proposition 1.2. The map $f: U \ni (u, v) \mapsto f(u, v) \in \mathbb{R}^3$ is an immersion if and only if $f_u(u, v)$ and $f_v(u, v)$ are linearly independent for each $(u, v) \in U$.

Sect. 1

^{08.} April, 2016. Revised: 15. April, 2016

¹We use the word smooth for "of class C^{∞} ", in this lecture.

Change of Parameters. Let $f: \Sigma \to \mathbb{R}^3$ be an immersion of a 2-manifold Σ . Take local coordinate charts (U, (u, v)) and $(V, (\xi, \eta))$ on a neighborhood of $P \in \Sigma$. Then the change of coordinates is a pair of smooth functions

(1.4)
$$u = u(\xi, \eta), \quad v = v(\xi, \eta)$$

such that (ξ, η) in V and $(u(\xi, \eta), v(\xi, \eta)) \in U$ corresponds to the same point of Σ . We write its *Jacobian matrix*

(1.5) $J := \begin{pmatrix} u_{\xi} & u_{\eta} \\ v_{\xi} & v_{\eta} \end{pmatrix},$

such that $\det J$ does not vanish everywhere. We can write

(1.6)
$$du = u_{\xi}d\xi + u_{\eta}d\eta, \qquad dv = v_{\xi}d\xi + v_{\eta}d\eta.$$

The coordinate change (1.4) is said to be orientation preserving (resp. orientation reversing) if det J is positive (resp. negative). Two coordinate charts (U, (u, v)) and $(V, (\xi, \eta))$ are compatible if the change of coordinates is orientation preserving.

Definition 1.3. A manifold Σ is *orientable* if there exists an atlas $\mathcal{A} = \{(U_j, (u_j, v_j))\}$ of Σ such that each charts in \mathcal{A} are compatible. Such a choice of atlas is called the *orientation* of Σ . The manifold Σ is called *oriented* if one orientation is specified. In this case, a coordinate chart (U, (u, v)) is said to be *compatible to the orientation* if it is compatible to one of the chart in the fixed orientation.

For the sake of simplicity, we consider only oriented manifolds in this lecture.

The unit normal vector.

Definition 1.4. The *unit normal vector field* ν of an immersion $f: \Sigma \to \mathbb{R}^3$ on a domain $U \subset \Sigma$ is a smooth map $\nu: \Sigma \supset U \to \mathbb{R}^3$ such that

(1.7)
$$df_{\mathbf{P}}(T_{\mathbf{P}}\Sigma) \perp \nu(\mathbf{P}), \qquad |\nu(\mathbf{P})| = 1$$

hold for all $P \in U$.

Remark 1.5. For a local coordinate chart (U, (u, v)) of Σ ,

(1.8)
$$\nu(u,v) := \frac{f_u(u,v) \times f_v(u,v)}{|f_u(u,v) \times f_v(u,v)|}$$

is a unit normal vector field on U of $f: \Sigma \to \mathbb{R}^3$, where " \times " denotes the vector product or the outer product of \mathbb{R}^3 .

Since (1.8) does not depend on the *orientation preserving* change of coordinates, one can find globally defined unit normal vector field of f if Σ is oriented.

The first fundamental form Let $f: \Sigma \to \mathbb{R}^3$ be an immersion and (U, (u, v)) a coordinate chart of Σ . The *first fundamental form* (or the *induced metric*) of f is defined as

(1.9)
$$ds^{2} := df \cdot df = (f_{u} du + f_{v} dv) \cdot (f_{u} du + f_{v} dv)$$
$$= E du^{2} + 2F du dv + G dv^{2},$$
$$E = f_{u} \cdot f_{u}, \quad F = f_{u} \cdot f_{v}, \quad G = f_{v} \cdot f_{v}.$$

The functions E, F, G in (u, v) are called the *entries* of the first fundamental form. Let $(V, (\xi, \eta))$ be another coordinate chart

of Σ , and consider a change of coordinates as in (1.4). Then we have, by the chain-rule,

(1.10)
$$\begin{pmatrix} \widetilde{E} & \widetilde{F} \\ \widetilde{F} & \widetilde{G} \end{pmatrix} = {}^{t}J \begin{pmatrix} E & F \\ F & G \end{pmatrix} J,$$

where $\widetilde{E} = f_{\xi} \cdot f_{\xi}, \quad \widetilde{F} = f_{\xi} \cdot f_{\eta}, \quad \widetilde{G} = f_{\eta} \cdot f_{\eta},$

where J is the Jacobian matrix (1.5) of the coordinate change. Moreover, the first fundamental form does not depend of the choice of coordinate charts by virtue of (1.6):

$$E \, du^2 + 2F \, du \, dv + G \, dv^2 = \widetilde{E} \, d\xi^2 + 2\widetilde{F} d\xi, d\eta + \widetilde{G} \, d\eta^2.$$

By the Schwartz inequality, we have

Lemma 1.6. $EG - F^2 > 0$.

Lemma 1.7. Let $f: \Sigma \to \mathbb{R}^3$ be an immersion and (U, (u, v)) a local coordinate chart. Then

$$e_1(u,v) := \frac{1}{\sqrt{E}} f_u, \quad e_2(u,v) := \frac{1}{\sqrt{EG - F^2}} \left(-F f_u + E f_v \right)$$

form an orthonormal system for each $(u, v) \in U$.

The second fundamental form. Let Σ be an oriented manifold, $f: \Sigma \to \mathbb{R}^3$ an immersion, and ν the unit normal vector field. The second fundamental form is defined as

(1.11)
$$II := -df \cdot d\nu = -(f_u \, du + f_v \, dv) \cdot (\nu_u \, du + \nu_v \, dv),$$

where (U, (u, v)) is any local coordinate chart of Σ .

Lemma 1.8. The second fundamental form is written as

$$\begin{split} II &= L \, du^2 + 2M \, du \, dv + N \, dv^2, \\ where & \begin{cases} L &= -f_u \cdot \nu_u = f_{uu} \cdot \nu, \\ M &= -f_u \cdot \nu_v = -f_v \cdot \nu_u = f_{uv} \cdot \nu, \\ N &= -f_v \cdot \nu_v = f_{vv} \cdot \nu. \end{cases} \end{split}$$

Proof. By definition,

$$II = -f_u \cdot \nu_u \, du^2 - (f_u \cdot \nu_v + f_v \cdot \nu_u) \, du \, dv - f_v \cdot \nu_v \, dv^2$$

holds. Here, since f_u and f_v are perpendicular to ν ,

$$-f_u \cdot \nu_v = -(f_u \cdot \nu)_v + f_{uv} \cdot \nu = f_{uv} \cdot \nu,$$

$$-f_v \cdot \nu_u = -(f_v \cdot \nu)_u + f_{vu} \cdot \nu = -f_{uv} \cdot \nu, \dots \qquad \Box$$

The functions L, M, N in Lemma 1.8 is called the *entries* of the second fundamental form.

Similar to the first fundamental form, the second fundamental form does not depend of the choice of coordinates:

(1.12)
$$\begin{pmatrix} \widetilde{L} & \widetilde{M} \\ \widetilde{M} & \widetilde{N} \end{pmatrix} = {}^{t}J \begin{pmatrix} L & M \\ M & N \end{pmatrix} J,$$

where L, M, N (resp. $\widetilde{L}, \widetilde{M}, \widetilde{N}$) are the entries of the second fundamental form in uv- (resp. $\xi\eta$ -) coordinates, and J is the Jacobian matrix (1.5).

Curvatures. Let $f: \Sigma \to \mathbb{R}^3$ be an immersion of an oriented 2-manifold Σ and take the unit normal vector field ν by Remark 1.5. For a local coordinate chart (U, (u, v)) on Σ , one can consider a matrix-valued function by Lemma 1.6:

(1.13)
$$A = \begin{pmatrix} E & F \\ F & G \end{pmatrix}^{-1} \begin{pmatrix} L & M \\ M & N \end{pmatrix},$$

which is called the Weingarten matrix. Taking another coordinate chart $(V, (\xi, \eta))$, one can obtain the Weingarten matrix \widetilde{A} with respect to the coordinates (ξ, η) . By (1.10) and (1.12)

(1.14)
$$\widetilde{A} = J^{-1}AJ$$

holds, where J is the Jacobian matrix as in (1.5). Hence

Lemma 1.9. The eigenvalues, the determinant, and the trace of the Weingarten matrix (1.13) do not depend on the choice of coordinates (compatible to the orientation).

Lemma 1.10. The eigenvalues of the Weingarten matrix are invariant under orientation preserving isometries.

Lemma 1.11 (Theorem 8.7 in [1-1]). The eigenvalues of the Weingarten matrix are real valued functions.

Definition 1.12. The eigenvalues λ_1 , λ_2 of the Weingarten matrix A is called the *principal curvatures*. We call the functions

(1.15)
$$K := \det A = \lambda_1 \lambda_2, \qquad H := \frac{1}{2} \operatorname{tr} A = \frac{\lambda_1 + \lambda_2}{2},$$

the Gaussian curvature and the mean curvature, respectively.

Example 1.13. An immersion $(u, v) \mapsto (u, v, 0)$ represents the xy-plane in \mathbb{R}^3 . Since $\nu = {}^t(0, 0, 1)$ is constant, the Weingarten matrix vanishes identically, and then the principal curvatures are zero. In particular, the plane has zero Gaussian curvature.

Example 1.14. An map $f(u, v) = {}^t(\cos u \cos v, \cos u \sin v, \sin u)$ is immersive on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times (-\pi, \pi)$, which represents the sphere of radius 1, whose Gaussian curvature is identically 1.

References

[1-1] 梅原雅顕・山田光太郎:曲線と曲面―微分幾何的アプローチ(改訂版), 裳華房,2014.

Exercises

1-1^H Consider a smooth map $f : \mathbb{R}^2 \to \mathbb{R}^3$ as

$$f(u,v) = \left(\frac{a\cos u}{\cosh v}, \frac{a\sin u}{\cosh v}, a(v-\tanh v) + bu\right),\,$$

where a > 0 and $b \ge 0$ are constants satisfying $a^2 + b^2 = 1$.

- (1) Find a domain $D \subset \mathbb{R}^2$ satisfying
 - The restriction $f|_D$ is an immersion.
 - $(0,1) \in D$.
 - *D* is maximal among domains satisfying two conditions above.
- (2) Compute the Gaussian curvature of f on D.
- (3) Draw a picture of the image of $f|_D$ for (a, b) = (1, 0).