
1 A review of the surface theory.

The Euclidean space. We denote by R3 the Euclidean 3-
space with inner product “ · ”, that is,

x·y := x1y1+x2y2+x3y3 = txy,


x =




x1

x2

x3


 , y =




y1

y2

y3




 .

Here, we consider vectors in R3 as column vectors and “t ”
denotes the transposition. The Euclidean distance d of R3 is
defined as d(x,y) := |y − x|, where |v| :=

√
v · v. An isometry

of R3, that is, a transformation F : R3 → R3 preserving the
Euclidean distance, has the following form:

(1.1) F (x) = Px + b P ∈ O(3), b ∈ R3.

Here, we denote

O(3) = the set of 3 × 3 orthogonal matrices,

SO(3) = {P ∈ O(3) | det P = 1}.

A basis {b1, b2, b3} of R3 is said to be positive (resp. nega-
tive) if det(b1, b2, b3) is positive (resp. negative). The triple of
the column vectors of a matrix in O(3) (resp. SO(3)) forms an
orthonormal basis (resp. a positive orthonormal basis).

An isometry as in (1.1) is called an orientation preserving
isometry (resp. an orientation reversing isometry) if A ∈ SO(3)
(resp. A ∈ O(3) \ SO(3)).
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Immersed surfaces. Consider a smooth1 2-manifold Σ and
a smooth map

(1.2) f : Σ ∋ P 7−→ f(P) =
t(

x(P), y(P), z(P)
)

∈ R3.

Then each component of f is a smooth function defined on Σ.
For each point P ∈ Σ, we define a liner map dfP : TPΣ → R3 as

(1.3) dfP(X) :=
t(

dxP(X), dyP(X), dzP(X)
)

(X ∈ TPΣ),

which is called the differential of the map f at P, where dx, dy
and dz are the usual differential of smooth functions.

Definition 1.1. A map f as in (1.2) is immersive at P if the
map dfP : TPΣ → R3 is injective. Moreover, f is said to be an
immersion if f is immersive at all P ∈ Σ. In this lecture, an
immersion as (1.2) is called an immersed surface.

Let (U, (u, v)) be a local coordinate chart of Σ at P. Then f
in (1.2) is considered as an R3-valued function of (u, v), and

df
(

∂
∂u

)
= fu =

t
(xu, yu, zu), df

(
∂
∂v

)
= fv.

In particular, the image of df(u,v) is spanned by fu(u, v), fv(u, v).
Thus, we have

Proposition 1.2. The map f : U ∋ (u, v) 7→ f(u, v) ∈ R3 is
an immersion if and only if fu(u, v) and fv(u, v) are linearly
independent for each (u, v) ∈ U .

1We use the word smooth for “of class C∞”, in this lecture.
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Change of Parameters. Let f : Σ → R3 be an immersion
of a 2-manifold Σ. Take local coordinate charts (U, (u, v)) and
(V, (ξ, η)) on a neighborhood of P ∈ Σ. Then the change of
coordinates is a pair of smooth functions

(1.4) u = u(ξ, η), v = v(ξ, η)

such that (ξ, η) in V and
(
u(ξ, η), v(ξ, η)

)
∈ U corresponds to

the same point of Σ. We write its Jacobian matrix

(1.5) J :=

(
uξ uη

vξ vη

)
,

such that det J does not vanish everywhere. We can write

(1.6) du = uξdξ + uηdη, dv = vξdξ + vηdη.

The coordinate change (1.4) is said to be orientation pre-
serving (resp. orientation reversing) if det J is positive (resp.
negative). Two coordinate charts (U, (u, v)) and (V, (ξ, η)) are
compatible if the change of coordinates is orientation preserving.

Definition 1.3. A manifold Σ is orientable if there exists an
atlas A = {(Uj , (uj , vj))} of Σ such that each charts in A are
compatible. Such a choice of atlas is called the orientation of Σ.
The manifold Σ is called oriented if one orientation is specified.
In this case, a coordinate chart (U, (u, v)) is said to be compatible
to the orientation if it is compatible to one of the chart in the
fixed orientation.

For the sake of simplicity, we consider only oriented mani-
folds in this lecture.
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The unit normal vector.

Definition 1.4. The unit normal vector field ν of an immersion
f : Σ → R3 on a domain U ⊂ Σ is a smooth map ν : Σ ⊃ U → R3

such that

(1.7) dfP(TPΣ) ⊥ ν(P), |ν(P)| = 1

hold for all P ∈ U .

Remark 1.5. For a local coordinate chart (U, (u, v)) of Σ,

(1.8) ν(u, v) :=
fu(u, v) × fv(u, v)

|fu(u, v) × fv(u, v)|

is a unit normal vector field on U of f : Σ → R3, where “×”
denotes the vector product or the outer product of R3.

Since (1.8) does not depend on the orientation preserving
change of coordinates, one can find globally defined unit normal
vector field of f if Σ is oriented.

The first fundamental form Let f : Σ → R3 be an immer-
sion and (U, (u, v)) a coordinate chart of Σ. The first funda-
mental form (or the induced metric) of f is defined as

ds2 : = df · df = (fu du + fv dv) · (fu du + fv dv)(1.9)

= E du2 + 2F du dv + Gdv2,

E = fu · fu, F = fu · fv, G = fv · fv.

The functions E, F , G in (u, v) are called the entries of the first
fundamental form. Let (V, (ξ, η)) be another coordinate chart
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of Σ, and consider a change of coordinates as in (1.4). Then we
have, by the chain-rule,

(1.10)

(
Ẽ F̃

F̃ G̃

)
= tJ

(
E F
F G

)
J,

where Ẽ = fξ · fξ, F̃ = fξ · fη, G̃ = fη · fη,

where J is the Jacobian matrix (1.5) of the coordinate change.
Moreover, the first fundamental form does not depend of the
choice of coordinate charts by virtue of (1.6):

E du2 + 2F du dv + Gdv2 = Ẽ dξ2 + 2F̃ dξ, dη + G̃ dη2.

By the Schwartz inequality, we have

Lemma 1.6. EG − F 2 > 0.

Lemma 1.7. Let f : Σ → R3 be an immersion and (U, (u, v)) a
local coordinate chart. Then

e1(u, v) :=
1√
E

fu, e2(u, v) :=
1√

EG − F 2

(
−Ffu + Efv

)

form an orthonormal system for each (u, v) ∈ U .

The second fundamental form. Let Σ be an oriented man-
ifold, f : Σ → R3 an immersion, and ν the unit normal vector
field. The second fundamental form is defined as

(1.11) II := −df · dν = −(fu du + fv dv) · (νu du + νv dv),

where (U, (u, v)) is any local coordinate chart of Σ.
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Lemma 1.8. The second fundamental form is written as

II = Ldu2 + 2M du dv + N dv2,

where





L = −fu · νu = fuu · ν,

M = −fu · νv = −fv · νu = fuv · ν,

N = −fv · νv = fvv · ν.

Proof. By definition,

II = −fu · νu du2 − (fu · νv + fv · νu) du dv − fv · νv dv2

holds. Here, since fu and fv are perpendicular to ν,

−fu · νv = −(fu · ν)v + fuv · ν = fuv · ν,

−fv · νu = −(fv · ν)u + fvu · ν = −fuv · ν, . . .

The functions L, M , N in Lemma 1.8 is called the entries
of the second fundamental form.

Similar to the first fundamental form, the second fundamen-
tal form does not depend of the choice of coordinates:

(1.12)

(
L̃ M̃

M̃ Ñ

)
= tJ

(
L M
M N

)
J,

where L, M , N (resp. L̃, M̃ , Ñ) are the entries of the second
fundamental form in uv- (resp. ξη-) coordinates, and J is the
Jacobian matrix (1.5).
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Curvatures. Let f : Σ → R3 be an immersion of an oriented
2-manifold Σ and take the unit normal vector field ν by Re-
mark 1.5. For a local coordinate chart (U, (u, v)) on Σ, one can
consider a matrix-valued function by Lemma 1.6:

(1.13) A =

(
E F
F G

)−1(
L M
M N

)
,

which is called the Weingarten matrix. Taking another coordi-
nate chart (V, (ξ, η)), one can obtain the Weingarten matrix Ã
with respect to the coordinates (ξ, η). By (1.10) and (1.12)

(1.14) Ã = J−1AJ

holds, where J is the Jacobian matrix as in (1.5). Hence

Lemma 1.9. The eigenvalues, the determinant, and the trace
of the Weingarten matrix (1.13) do not depend on the choice of
coordinates (compatible to the orientation).

Lemma 1.10. The eigenvalues of the Weingarten matrix are
invariant under orientation preserving isometries.

Lemma 1.11 (Theorem 8.7 in [1-1]). The eigenvalues of the
Weingarten matrix are real valued functions.

Definition 1.12. The eigenvalues λ1, λ2 of the Weingarten ma-
trix A is called the prinicipal curvatures. We call the functions

(1.15) K := det A = λ1λ2, H :=
1

2
trA =

λ1 + λ2

2
,

the Gaussian curvature and the mean curvature, respectively.
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Example 1.13. An immersion (u, v) 7→ (u, v, 0) represents the
xy-plane in R3. Since ν =

t
(0, 0, 1) is constant, the Weingarten

matrix vanishes identically, and then the principal curvatures
are zero. In particular, the plane has zero Gaussian curvature.

Example 1.14. An map f(u, v) =
t
(cosu cos v, cos u sin v, sinu)

is immersive on (−π
2 , π

2 ) × (−π, π), which represents the sphere
of radius 1, whose Gaussian curvature is identically 1.
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Exercises

1-1H Consider a smooth map f : R2 → R3 as

f(u, v) =

(
a cos u

cosh v
,
a sin u

cosh v
, a(v − tanh v) + bu

)
,

where a > 0 and b ≧ 0 are constants satisfying a2+b2 = 1.

(1) Find a domain D ⊂ R2 satisfying

• The restriction f |D is an immersion.

• (0, 1) ∈ D.

• D is maximal among domains satisfying two con-
ditions above.

(2) Compute the Gaussian curvature of f on D.

(3) Draw a picture of the image of f |D for (a, b) = (1, 0).


