## 1 A review of the surface theory.

The Euclidean space. We denote by $\mathbb{R}^{3}$ the Euclidean 3space with inner product " . ", that is,
$\boldsymbol{x} \cdot \boldsymbol{y}:=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}={ }^{t} \boldsymbol{x} \boldsymbol{y}, \quad\left(\boldsymbol{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right), \boldsymbol{y}=\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right)\right)$.
Here, we consider vectors in $\mathbb{R}^{3}$ as column vectors and "t " denotes the transposition. The Euclidean distance $d$ of $\mathbb{R}^{3}$ is defined as $d(\boldsymbol{x}, \boldsymbol{y}):=|\boldsymbol{y}-\boldsymbol{x}|$, where $|\boldsymbol{v}|:=\sqrt{\boldsymbol{v} \cdot \boldsymbol{v}}$. An isometry of $\mathbb{R}^{3}$, that is, a transformation $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ preserving the Euclidean distance, has the following form:

$$
\begin{equation*}
F(\boldsymbol{x})=P \boldsymbol{x}+\boldsymbol{b} \quad P \in \mathrm{O}(3), \quad \boldsymbol{b} \in \mathbb{R}^{3} . \tag{1.1}
\end{equation*}
$$

Here, we denote

$$
\begin{aligned}
\mathrm{O}(3) & =\text { the set of } 3 \times 3 \text { orthogonal matrices, } \\
\mathrm{SO}(3) & =\{P \in \mathrm{O}(3) \mid \operatorname{det} P=1\}
\end{aligned}
$$

A basis $\left\{\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \boldsymbol{b}_{3}\right\}$ of $\mathbb{R}^{3}$ is said to be positive (resp. negative) if $\operatorname{det}\left(\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \boldsymbol{b}_{3}\right)$ is positive (resp. negative). The triple of the column vectors of a matrix in $\mathrm{O}(3)$ (resp. $\mathrm{SO}(3)$ ) forms an orthonormal basis (resp. a positive orthonormal basis).

An isometry as in (1.1) is called an orientation preserving isometry (resp. an orientation reversing isometry) if $A \in \mathrm{SO}(3)$ (resp. $A \in \mathrm{O}(3) \backslash \mathrm{SO}(3))$.

[^0]Immersed surfaces. Consider a smooth ${ }^{1} 2$-manifold $\Sigma$ and a smooth map

$$
\begin{equation*}
f: \Sigma \ni \mathrm{P} \longmapsto f(\mathrm{P})={ }^{t}(x(\mathrm{P}), y(\mathrm{P}), z(\mathrm{P})) \in \mathbb{R}^{3} . \tag{1.2}
\end{equation*}
$$

Then each component of $f$ is a smooth function defined on $\Sigma$. For each point $\mathrm{P} \in \Sigma$, we define a liner map $d f_{\mathrm{P}}: T_{\mathrm{P}} \Sigma \rightarrow \mathbb{R}^{3}$ as

$$
\text { (1.3) } \quad d f_{\mathrm{P}}(X):=^{t}\left(d x_{\mathrm{P}}(X), d y_{\mathrm{P}}(X), d z_{\mathrm{P}}(X)\right) \quad\left(X \in T_{\mathrm{P}} \Sigma\right),
$$

which is called the differential of the map $f$ at P , where $d x, d y$ and $d z$ are the usual differential of smooth functions.

Definition 1.1. A map $f$ as in (1.2) is immersive at P if the $\operatorname{map} d f_{\mathrm{P}}: T_{\mathrm{P}} \Sigma \rightarrow \mathbb{R}^{3}$ is injective. Moreover, $f$ is said to be an immersion if $f$ is immersive at all $\mathrm{P} \in \Sigma$. In this lecture, an immersion as (1.2) is called an immersed surface.

Let $(U,(u, v))$ be a local coordinate chart of $\Sigma$ at P . Then $f$ in (1.2) is considered as an $\mathbb{R}^{3}$-valued function of $(u, v)$, and

$$
d f\left(\frac{\partial}{\partial u}\right)=f_{u}={ }^{t}\left(x_{u}, y_{u}, z_{u}\right), \quad d f\left(\frac{\partial}{\partial v}\right)=f_{v} .
$$

In particular, the image of $d f_{(u, v)}$ is spanned by $f_{u}(u, v), f_{v}(u, v)$. Thus, we have

Proposition 1.2. The map $f: U \ni(u, v) \mapsto f(u, v) \in \mathbb{R}^{3}$ is an immersion if and only if $f_{u}(u, v)$ and $f_{v}(u, v)$ are linearly independent for each $(u, v) \in U$.

[^1]Change of Parameters. Let $f: \Sigma \rightarrow \mathbb{R}^{3}$ be an immersion of a 2 -manifold $\Sigma$. Take local coordinate charts $(U,(u, v))$ and $(V,(\xi, \eta))$ on a neighborhood of $\mathrm{P} \in \Sigma$. Then the change of coordinates is a pair of smooth functions

$$
\begin{equation*}
u=u(\xi, \eta), \quad v=v(\xi, \eta) \tag{1.4}
\end{equation*}
$$

such that $(\xi, \eta)$ in $V$ and $(u(\xi, \eta), v(\xi, \eta)) \in U$ corresponds to the same point of $\Sigma$. We write its Jacobian matrix

$$
J:=\left(\begin{array}{ll}
u_{\xi} & u_{\eta}  \tag{1.5}\\
v_{\xi} & v_{\eta}
\end{array}\right),
$$

such that $\operatorname{det} J$ does not vanish everywhere. We can write

$$
\begin{equation*}
d u=u_{\xi} d \xi+u_{\eta} d \eta, \quad d v=v_{\xi} d \xi+v_{\eta} d \eta \tag{1.6}
\end{equation*}
$$

The coordinate change (1.4) is said to be orientation preserving (resp. orientation reversing) if $\operatorname{det} J$ is positive (resp. negative). Two coordinate charts $(U,(u, v))$ and $(V,(\xi, \eta))$ are compatible if the change of coordinates is orientation preserving.

Definition 1.3. A manifold $\Sigma$ is orientable if there exists an atlas $\mathcal{A}=\left\{\left(U_{j},\left(u_{j}, v_{j}\right)\right)\right\}$ of $\Sigma$ such that each charts in $\mathcal{A}$ are compatible. Such a choice of atlas is called the orientation of $\Sigma$. The manifold $\Sigma$ is called oriented if one orientation is specified. In this case, a coordinate chart $(U,(u, v))$ is said to be compatible to the orientation if it is compatible to one of the chart in the fixed orientation.

For the sake of simplicity, we consider only oriented manifolds in this lecture.

## The unit normal vector.

Definition 1.4. The unit normal vector field $\nu$ of an immersion $f: \Sigma \rightarrow \mathbb{R}^{3}$ on a domain $U \subset \Sigma$ is a smooth map $\nu: \Sigma \supset U \rightarrow \mathbb{R}^{3}$ such that

$$
\begin{equation*}
d f_{\mathrm{P}}\left(T_{\mathrm{P}} \Sigma\right) \perp \nu(\mathrm{P}), \quad|\nu(\mathrm{P})|=1 \tag{1.7}
\end{equation*}
$$

hold for all $\mathrm{P} \in U$.
Remark 1.5. For a local coordinate chart $(U,(u, v))$ of $\Sigma$,

$$
\begin{equation*}
\nu(u, v):=\frac{f_{u}(u, v) \times f_{v}(u, v)}{\left|f_{u}(u, v) \times f_{v}(u, v)\right|} \tag{1.8}
\end{equation*}
$$

is a unit normal vector field on $U$ of $f: \Sigma \rightarrow \mathbb{R}^{3}$, where " $\times$ " denotes the vector product or the outer product of $\mathbb{R}^{3}$.

Since (1.8) does not depend on the orientation preserving change of coordinates, one can find globally defined unit normal vector field of $f$ if $\Sigma$ is oriented.

The first fundamental form Let $f: \Sigma \rightarrow \mathbb{R}^{3}$ be an immersion and $(U,(u, v))$ a coordinate chart of $\Sigma$. The first fundamental form (or the induced metric) of $f$ is defined as

$$
\begin{align*}
d s^{2}:= & d f \cdot d f=\left(f_{u} d u+f_{v} d v\right) \cdot\left(f_{u} d u+f_{v} d v\right)  \tag{1.9}\\
= & E d u^{2}+2 F d u d v+G d v^{2}, \\
& E=f_{u} \cdot f_{u}, \quad F=f_{u} \cdot f_{v}, \quad G=f_{v} \cdot f_{v} .
\end{align*}
$$

The functions $E, F, G$ in $(u, v)$ are called the entries of the first fundamental form. Let $(V,(\xi, \eta))$ be another coordinate chart
of $\Sigma$, and consider a change of coordinates as in (1.4). Then we have, by the chain-rule,

$$
\begin{align*}
& \left(\begin{array}{cc}
\widetilde{E} & \widetilde{F} \\
\widetilde{F} & \widetilde{G}
\end{array}\right)={ }^{t} J\left(\begin{array}{cc}
E & F \\
F & G
\end{array}\right) J  \tag{1.10}\\
& \quad \text { where } \quad \widetilde{E}=f_{\xi} \cdot f_{\xi}, \quad \widetilde{F}=f_{\xi} \cdot f_{\eta}, \quad \widetilde{G}=f_{\eta} \cdot f_{\eta}
\end{align*}
$$

where $J$ is the Jacobian matrix (1.5) of the coordinate change. Moreover, the first fundamental form does not depend of the choice of coordinate charts by virtue of (1.6):

$$
E d u^{2}+2 F d u d v+G d v^{2}=\widetilde{E} d \xi^{2}+2 \widetilde{F} d \xi, d \eta+\widetilde{G} d \eta^{2}
$$

By the Schwartz inequality, we have
Lemma 1.6. $E G-F^{2}>0$.
Lemma 1.7. Let $f: \Sigma \rightarrow \mathbb{R}^{3}$ be an immersion and $(U,(u, v)) a$ local coordinate chart. Then

$$
e_{1}(u, v):=\frac{1}{\sqrt{E}} f_{u}, \quad e_{2}(u, v):=\frac{1}{\sqrt{E G-F^{2}}}\left(-F f_{u}+E f_{v}\right)
$$

form an orthonormal system for each $(u, v) \in U$.
The second fundamental form. Let $\Sigma$ be an oriented manifold, $f: \Sigma \rightarrow \mathbb{R}^{3}$ an immersion, and $\nu$ the unit normal vector field. The second fundamental form is defined as
(1.11) $I I:=-d f \cdot d \nu=-\left(f_{u} d u+f_{v} d v\right) \cdot\left(\nu_{u} d u+\nu_{v} d v\right)$,
where $(U,(u, v))$ is any local coordinate chart of $\Sigma$.

Lemma 1.8. The second fundamental form is written as

$$
\begin{aligned}
& I I=L d u^{2}+2 M d u d v+N d v^{2}, \\
& \text { where }\left\{\begin{array}{l}
L=-f_{u} \cdot \nu_{u}=f_{u u} \cdot \nu \\
M=-f_{u} \cdot \nu_{v}=-f_{v} \cdot \nu_{u}=f_{u v} \cdot \nu, \\
N=-f_{v} \cdot \nu_{v}=f_{v v} \cdot \nu
\end{array}\right.
\end{aligned}
$$

Proof. By definition,

$$
I I=-f_{u} \cdot \nu_{u} d u^{2}-\left(f_{u} \cdot \nu_{v}+f_{v} \cdot \nu_{u}\right) d u d v-f_{v} \cdot \nu_{v} d v^{2}
$$

holds. Here, since $f_{u}$ and $f_{v}$ are perpendicular to $\nu$,

$$
\begin{aligned}
& -f_{u} \cdot \nu_{v}=-\left(f_{u} \cdot \nu\right)_{v}+f_{u v} \cdot \nu=f_{u v} \cdot \nu \\
& -f_{v} \cdot \nu_{u}=-\left(f_{v} \cdot \nu\right)_{u}+f_{v u} \cdot \nu=-f_{u v} \cdot \nu, \ldots
\end{aligned}
$$

The functions $L, M, N$ in Lemma 1.8 is called the entries of the second fundamental form.

Similar to the first fundamental form, the second fundamental form does not depend of the choice of coordinates:

$$
\left(\begin{array}{cc}
\widetilde{L} & \widetilde{M}  \tag{1.12}\\
\widetilde{M} & \widetilde{N}
\end{array}\right)={ }^{t} J\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right) J
$$

where $L, M, N$ (resp. $\widetilde{L}, \widetilde{M}, \widetilde{N})$ are the entries of the second fundamental form in $u v$ - (resp. $\xi \eta$-) coordinates, and $J$ is the Jacobian matrix (1.5).

Curvatures．Let $f: \Sigma \rightarrow \mathbb{R}^{3}$ be an immersion of an oriented 2 －manifold $\Sigma$ and take the unit normal vector field $\nu$ by Re－ mark 1．5．For a local coordinate chart $(U,(u, v))$ on $\Sigma$ ，one can consider a matrix－valued function by Lemma 1．6：

$$
A=\left(\begin{array}{ll}
E & F  \tag{1.13}\\
F & G
\end{array}\right)^{-1}\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right)
$$

which is called the Weingarten matrix．Taking another coordi－ nate chart $(V,(\xi, \eta))$ ，one can obtain the Weingarten matrix $\widetilde{A}$ with respect to the coordinates $(\xi, \eta)$ ．By（1．10）and（1．12）

$$
\begin{equation*}
\widetilde{A}=J^{-1} A J \tag{1.14}
\end{equation*}
$$

holds，where $J$ is the Jacobian matrix as in（1．5）．Hence
Lemma 1．9．The eigenvalues，the determinant，and the trace of the Weingarten matrix（1．13）do not depend on the choice of coordinates（compatible to the orientation）．

Lemma 1．10．The eigenvalues of the Weingarten matrix are invariant under orientation preserving isometries．
Lemma 1.11 （Theorem 8.7 in［1－1］）．The eigenvalues of the Weingarten matrix are real valued functions．

Definition 1．12．The eigenvalues $\lambda_{1}, \lambda_{2}$ of the Weingarten ma－ trix $A$ is called the prinicipal curvatures．We call the functions
（1．15）$\quad K:=\operatorname{det} A=\lambda_{1} \lambda_{2}, \quad H:=\frac{1}{2} \operatorname{tr} A=\frac{\lambda_{1}+\lambda_{2}}{2}$ ，
the Gaussian curvature and the mean curvature，respectively．

Example 1．13．An immersion $(u, v) \mapsto(u, v, 0)$ represents the $x y$－plane in $\mathbb{R}^{3}$ ．Since $\nu={ }^{t}(0,0,1)$ is constant，the Weingarten matrix vanishes identically，and then the principal curvatures are zero．In particular，the plane has zero Gaussian curvature．
Example 1．14．An map $f(u, v)={ }^{t}(\cos u \cos v, \cos u \sin v, \sin u)$ is immersive on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times(-\pi, \pi)$ ，which represents the sphere of radius 1 ，whose Gaussian curvature is identically 1 ．

## References

［1－1］梅原雅顕•山田光太郎：曲線と曲面一微分幾何的アプローチ（改訂版），裳華房，2014．

## Exercises

$\mathbf{1 - 1}{ }^{\mathrm{H}}$ Consider a smooth map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ as

$$
f(u, v)=\left(\frac{a \cos u}{\cosh v}, \frac{a \sin u}{\cosh v}, a(v-\tanh v)+b u\right)
$$

where $a>0$ and $b \geqq 0$ are constants satisfying $a^{2}+b^{2}=1$ ．
（1）Find a domain $D \subset \mathbb{R}^{2}$ satisfying
－The restriction $\left.f\right|_{D}$ is an immersion．
－$(0,1) \in D$ ．
－$D$ is maximal among domains satisfying two con－ ditions above．
（2）Compute the Gaussian curvature of $f$ on $D$ ．
（3）Draw a picture of the image of $\left.f\right|_{D}$ for $(a, b)=(1,0)$ ．


[^0]:    8. April, 2016. Revised: 15. April, 2016
[^1]:    ${ }^{1}$ We use the word smooth for "of class $C^{\infty}$ ", in this lecture.

