Aquatic Environmental Science

\#06: Dissolution and Kinetics

Exercise
 (Model answer)

Q1. Answer the following questions regarding physicochemical reaction.
(1) Disintegration of cesium137 to barium137 follows first-order reaction with rate constant of $0.023 \mathrm{year}^{-1}$. Please estimate a half-life of cesium137. Note that $\ln 2=0.693$. 2pt

Time-dependent change of cesium 137 can be described as follows:

$$
\ln [\mathrm{Cs} 137]_{\mathrm{t}}=-\mathrm{k}^{*} \mathrm{t}+\ln [\mathrm{Cs} 137]_{0}
$$

A half-life time ($\mathrm{t}_{1 / 2}$) is the time when the concentration becomes half of initial concentration, then:

$$
\ln [\mathrm{Cs} 137]_{0} * 1 / 2=-\mathrm{k} * \mathrm{t}_{1 / 2}+\ln [\mathrm{Cs} 137]_{0}
$$

Rearranging gives:

$$
\begin{aligned}
& \ln 1 / 2=-\mathrm{k}^{*} \mathrm{t}_{1 / 2} \\
& \mathrm{t}_{1 / 2}=(\ln 2) / \mathrm{k}=0.639 / 0.023=30.1 \text { (year) }
\end{aligned}
$$

(3) Assume first-order reaction $(A \rightarrow B)$. If you got the time-course date for concentration of molecule A (say every seconds from time zero to 1 hr), how do you determine the rate constant of this reaction? Please describe a brief methodology. Do you need any statistical approaches to this end? 3pt

After plotting $\ln [\mathrm{A}] /\left[\mathrm{A}_{0}\right]$ as a function of time (t), the rate constant (k) can be calculated by use of linear regression analysis (as a slope of line). Thus, statistical approach will be used.

Q2. Solve the differential equation for concentration (C) in a plug-flow system, assuming a firstorder decay rate. 3 pt
$C=C_{0} \exp (-k x / u)$
Q3. Write one question related to today's lecture. 2 pt
Any question is acceptable as long as it's related to the content of the class.

