

Rockstroem et al., 2009

Case of Japan | Kitakyushu

WW II ended in 1945.

Kitakyushu city

Major Pollution Diseases of Japan

	Name	Year	Cause	Source
-	Itai-itai disease	1912	Cd	Mining in Toyama Prefecture 185 persons
	Minamata disease	1932 - 68	CH_3Hg^+	Chisso Chemical Factory 3000 persons
	Yokkaichi Asthma	1961	SO ₂ , NO ₂	Air Pollution in Yokkaichi
_	Niigata Minamata disease	1965	CH ₃ Hg ⁺	Shōwa Electrical Works
			5 A.	

Recently discovered pathogenic microbes

AGENT	MODE OF TRANSMISSION	DISEASE / SYMPTOMS
Rotavirus	Waterborne	Diarrhea
Legionella	Waterborne	Legionnaire's disease
Escherichia coli O157:H7	Foodborne	Enterohemorrhagic fever,
	Waterborne	kidney failure
Hepatitis E virus	Waterborne	Hepatitis
Cryptosporidium	Waterborne	Diarrhea
	Foodborne	
Calicivirus	Waterborne	Diarrhea
	Foodborne	
Helicobacter pylori	Foodborne	Stomach ulcers
	Waterborne	
Cyclospora	Foodborne	Diarrhea
	Waterborne	
Pepper et al., 2006		
. opper et an, 2000		
	🕐 di 😴 di di 🚬	A AND
		and states for the
	· · · · · · · · · · · · · · · · · · ·	
		And the second
Size of virus: 20-970n	m Dengue Virus	Rota Virus

oi virus. Zu

POPs in Tokyo Bay

Surface layer (0-5cm) of bottom sediment ($pg/g = 10^{-12} g/g$)

Point and Nonpoint Sources

Nonpoint source pollution generally results from land runoff, precipitation, atmospheric deposition, drainage, seepage or hydrologic modification.

Major Pollution Diseases of Japan

Name	Year	Cause	Major Pathway to Human
Itai-itai disease	1912	Cd	
Minamata disease	1932 - 68	CH_3Hg^+	
Yokkaichi Asthma	1961	SO ₂ , NO ₂	
Niigata Minamata disease	1965	CH₃Hg+	

Environmental Quality Standard in Japan

		1		
	Item	Standard Value	Item	Standard Value
	Cadmium	0.01 mg/L or less	1,1,1-trichloroethane	1 mg/L or less
	Total cyanide	Undetected	1,1,2-trichloroethane	0.006 mg/L or less
	Lead	0.01 mg/L or less	Trichloroethylene	0.03 mg/L or less
S	Hexavalent chromium	0.05 mg/L or less	Tetrachloroethylene	0.01 mg/L or less
em	Arsenic	0.01 mg/L or less	1,3-dichloropropene	0.002 mg/L or less
i:	Total mercury	0.0005 mg/L or less	Thiuram	0.006 mg/L or less
E	Alkylmercury	Undetected	Simazine	0.003 mg/L or less
ea	PCB	Undetected	Thiobencarb	0.02 mg/L or less
T	Dichloromethane	0.02 mg/L or less	Benzene	0.01 mg/L or less
	Carbon tetrachloride	0.002 mg/L or less	Selenium	0.01 mg/L or less
	1,2-dichloroethane	0.004 mg/L or less	Nitrate nitrogen & Nitrite nitrogen	10 mg/L or less
100	1,1-dichloroethylene	0.02 mg/L or less	Fluoride	0.8 mg/L or less
	Cis 1.2 dichloroothylono	0.04 mg/L or loss	Boron	1 mg/L or loce
	CI3-1,2-dichloroeutylene	0.04 mg/L or less	DOION	T mg/L of less
S	Item	River	Lake	Sea Area
tems	Item BOD	River ≤ 1 - 10 mg/L	Lake	Sea Area
t items	Item BOD COD-Mn	River ≤ 1 - 10 mg/L	Lake - ≤ 1 - 8 mg/L	Sea Area - ≤ 2 - 8 mg/L
ent items	Item BOD COD-Mn pH	Ever Siver ≤ 1 - 10 mg/L - 6.0 - 8.5	Lake - ≤ 1 - 8 mg/L 6.0 - 8.5	Sea Area - ≤ 2 - 8 mg/L 7.0 - 8.3
nment items	Item BOD COD-Mn PH SS	River ≤ 1 - 10 mg/L - 6.0 - 8.5 ≤ 25 - 100 mg/L etc.	Lake 	Sea Area - ≤ 2 - 8 mg/L 7.0 - 8.3
ronment items	Item BOD COD-Mn pH SS DO	River ≤ 1 - 10 mg/L - 6.0 - 8.5 ≤ 25 - 100 mg/L etc. 2-7.5 mg/L ≤	Lake ≤ 1 - 8 mg/L 6.0 - 8.5 ≤ 1 - 15 mg/L etc. 2-7.5 mg/L ≤	Sea Area - ≤ 2 - 8 mg/L 7.0 - 8.3 - 2-7.5 mg/L ≤
vironment items	Item BOD COD-Mn pH SS DO Coliform bacteria count	River ≤ 1 - 10 mg/L - 6.0 - 8.5 ≤ 25 - 100 mg/L etc. 2-7.5 mg/L ≤ ≤ 50 - 5,000 MPN/100 mL	Lake ≤ 1 - 8 mg/L 6.0 - 8.5 ≤ 1 - 15 mg/L etc. 2-7.5 mg/L ≤ ≤ 50 - 1,000 MPN/100 mL	Sea Area - ≤ 2 - 8 mg/L 7.0 - 8.3 - 2-7.5 mg/L ≤ ≤ 1,000 MPN/100 mL
environment items	Item BOD COD-Mn pH SS DO Coliform bacteria count N-hexane extracts	River ≤ 1 - 10 mg/L - 6.0 - 8.5 ≤ 25 - 100 mg/L etc. 2-7.5 mg/L ≤ ≤ 50 - 5,000 MPN/100 mL	Lake ≤ 1 - 8 mg/L 6.0 - 8.5 ≤ 1 - 15 mg/L etc. 2-7.5 mg/L ≤ ≤ 50 - 1,000 MPN/100 mL	Sea Area - ≤ 2 - 8 mg/L 7.0 - 8.3 - - 2-7.5 mg/L ≤ ≤ 1,000 MPN/100 mL Undetected.
ig environment items	Item BOD COD-Mn pH SS DO Coliform bacteria count N-hexane extracts Total nitrogen	River ≤ 1 - 10 mg/L - 6.0 - 8.5 ≤ 25 - 100 mg/L etc. 2-7.5 mg/L ≤ ≤ 50 - 5,000 MPN/100 mL	Lake ≤ 1 - 8 mg/L 6.0 - 8.5 ≤ 1 - 15 mg/L etc. 2-7.5 mg/L ≤ ≤ 50 - 1,000 MPN/100 mL - ≤ 0.1 - 1 mg/L	Sea Area - ≤ 2 - 8 mg/L 7.0 - 8.3 - - 2-7.5 mg/L ≤ ≤ 1,000 MPN/100 mL Undetected. ≤ 0.2 - 1 mg/L
ving environment items	Item BOD COD-Mn pH SS DO Coliform bacteria count N-hexane extracts Total nitrogen Total phosphorous	River ≤ 1 - 10 mg/L - 6.0 - 8.5 ≤ 25 - 100 mg/L etc. 2-7.5 mg/L ≤ ≤ 50 - 5,000 MPN/100 mL - -	Lake ≤ 1 - 8 mg/L 6.0 - 8.5 ≤ 1 - 15 mg/L etc. 2-7.5 mg/L ≤ ≤ 50 - 1,000 MPN/100 mL - ≤ 0.1 - 1 mg/L ≤ 0.005 - 0.1 mg/L	Sea Area - ≤ 2 - 8 mg/L 7.0 - 8.3 - 2-7.5 mg/L ≤ ≤ 1,000 MPN/100 mL Undetected. ≤ 0.2 - 1 mg/L ≤ 0.02 - 0.09 mg/L
environment items	Item BOD COD-Mn pH SS DO Coliform bacteria count N-hexane extracts	River ≤ 1 - 10 mg/L - 6.0 - 8.5 ≤ 25 - 100 mg/L etc. 2-7.5 mg/L ≤ ≤ 50 - 5,000 MPN/100 mL	Lake ≤ 1 - 8 mg/L 6.0 - 8.5 ≤ 1 - 15 mg/L etc. 2-7.5 mg/L ≤ ≤ 50 - 1,000 MPN/100 mL	Sea Area - ≤ 2 - 8 mg/L 7.0 - 8.3 - 2-7.5 mg/L ≤ ≤ 1,000 MPN/100 m Undetected.

Standards are devices to keep the lazy mind from thinking.

Williams Sedgwick (1855-1921)

They are not perfect, so be careful...

Relevant Processes of Fate & Transport of Pollutants

<image>

Ecosystem Service

Water Quality Management in Lakes and Reservoirs

Biomanipulation

Removal of Biomass

Water Treatment

Dredging

Lecture schedule

 June 13, Mon., Guidance to aquatic environmental science
June 16, Thu., Present state and properties of water
June 20, Mon., Watershed hydrology and aquatic ecosystem
June 23, Thu., Sediment and habitat dynamics
June 27, Mon., pH and redox potential
June 30, Thu., Dissolution and Kinetics
July 4, Mon., Particle and adsorption (with a guest speaker)
July 7, Thu., Mid-term exercise
July 11, Mon., Primary production (with a guest speaker)
July 14, Thu., Nutrient cycle
July 18, Mon., Organic carbon dynamics and microbial community
July 21, Thu., Biodiversity and species distribution (with a guest speaker)
July 25, Mon., Fate and transport of pollutants
July 28, Thu., Management of aquatic environments

15) August 1, Mon., Exam (Presentation and Report)

Next Class

Grazing in Vernal Pools Restoration Management Decisions

The Situation

The U.S. Fish and Wildlife Service has recently acquired 200 acres of open land in the Central Valley of California. This land once supported vernal pools that were home to many endemic and endangered flora and fauna. Unfortunately, over the last decade human activities such as off-road driving have significantly degraded the landscape. Because of this degradation invasive species have taken over both the uplands and the pool basins.

The acquired site has been approved for an active restoration plan that seeks to create ...

Appendix

Risk Assessment of Pollutants

Toxicity | Biotic Ligand Model (BLM)

Meyer et al. 1999

Environmental Risk

Actual or potential threat of adverse effects on living organisms and environment by effluents, emissions, wastes, resource depletion, etc., arising out of an organization's activities.

- 1. Risk assessment
- 2. Risk management

1. Hazard Identification

To determine the qualitative nature of the potential adverse consequences of the contaminant (chemical, radiation, noise, etc.) and the strength of the evidence it can have that effect.

Example	Aircraft	Smoking	Water environment
Hazard			

2. Determination of endpoint

Outcome of adverse effects to be considered for probability in risk assessment

Example	Aircraft	Smoking	Water environment
Hazard	Crash	Tar	Heat
Endpoint			

3. Exposure Quantification (曝露解析)

- To determine the amount of a contaminant (Dose, 用量) that individuals and populations will receive.
- Particular care is taken to determine the exposure of the susceptible population(s). (Sensitivity)
- As different location, lifestyles and other factors likely influence the amount of contaminant that is received, a range or distribution of possible values is generated in this step.

Example	Aircraft	Smoking	Water environment
Hazard	Crash	Tar	Heat
Endpoint	Death	Lung cancer	Loss of species
Exposure			

4. Dose-Response Analysis (容量反応解析)

Dose = Exposure

typically 10 for each unknown step.

• Logit model, Weibull model or other models can applied for different hazards and endpoints.

· To determine the relationship between dose and

the probability or the incidence of effect.

• The complexity of this step in many contexts

and/or from high to lower doses.

effects (NOAEL).

derives mainly from the need to extrapolate results from experimental animals to humans,

• An alternative to dose-response estimation is to

determine an effect unlikely to yield observable

Safety factor in the estimate of the "safe" dose, is

NOAEL: No Observed Adverse Effect Level

- Finally, the results of the 4 steps above are combined to produce an estimate of risk.
- Because of the different susceptibilities and exposures, this risk will vary within a population.

Example	Aircraft	Smoking	Water environment
Hazard	Crash	Tar	Heat
Endpoint	Death	Lung cancer	Loss of species
Exposure	mile/year.per	number/day·kg	∆degree/year
Dose-Response		Exposure - E	ndpoint

5. Risk characterization

Monte Carlo methods

- 1. Define a domain of possible inputs.
- 2. Generate inputs randomly from <u>a probability</u> <u>distribution</u> over the domain.
- 3. Perform a deterministic computation on the inputs.
- 4. Aggregate the results.

