繊維·複合材料B-1回目

屈折率と複屈折

化学構造から屈折率を推定する 屈折率異方性(複屈折)から分子配向を推定する

光 : 電磁波

屈折率

複屈折 : 屈折率異方性=配向

屈折率と化学構造

Lorentz-Lorenzの式

$$\frac{n^2 - 1}{n^2 + 2} \frac{M}{\rho} = \frac{4}{3} \pi N P$$

n:屈折率 M:分子量 ρ:密度

, N: アボガドロ数 P: 分極率 高分子の場合,繰り返し単位について 考える

$$P = \sum_{i} P_{i}$$

 P_i : 結合分極率

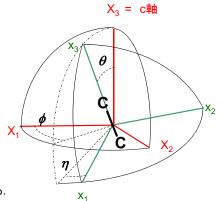
一般に屈折率は

フッ素以外のハロゲン、芳香環を含むと大

フッ素, 水素を多く含むと小

複屈折 = 屈折率異方性 = 分極率異方性 固有複屈折(極限複屈折) = 完全結晶の複屈折, 完全配向物の複屈折

分極率は2階のテンソル量


例えばC-C結合を考え、結合軸を $O-x_1x_2x_3$ 直行座標系の x_3 軸の 方向におくと、

$$P_{kl}^{0} = \begin{pmatrix} P_{T} & 0 & 0 \\ 0 & P_{T} & 0 \\ 0 & 0 & P_{L} \end{pmatrix}$$

これを、O-X₁X₂X₃直交座標系に変換する.

ここで、 $O-X_1X_2X_3$ は試料に固定した座標系で、

たとえばX3をMDとする

Euler 角 (θ,ϕ,η) とすれば、座標変換マトリックス a_{ii} は、

 $a_{ij} = \begin{pmatrix} \cos\theta\cos\phi\cos\eta - \sin\phi\sin\eta & -\cos\theta\cos\phi\sin\eta - \sin\phi\cos\eta & \sin\theta\cos\phi \\ \cos\theta\sin\phi\cos\eta + \cos\phi\sin\eta & -\cos\theta\sin\phi\sin\eta + \cos\phi\cos\eta & \sin\theta\sin\phi \\ -\sin\theta\cos\eta & \sin\theta\sin\eta & \cos\theta \end{pmatrix}$

$$P_{ij} = a_{ik} \, a_{jl} \, P^0_{kl}$$
 注) Einstein規約(同じ添字があるときは、1-3までの和をとる)

$$P_{33} = P_c = \sin^2\theta P_T + \cos^2\theta P_L$$

各結合について分極率の加成性が成り立つとすれば、

$$P_C = \sum \sin^2 \theta \, P_T + \sum \cos^2 \theta \, P_L$$

同様にして、任意の方向の分極率が計算できる.

(結合軸と、任意の方向のなす角は、原子座標から算出できる)

Lorentz-Lorenz の式

$$\frac{n^2-1}{n^2+2}\frac{M}{\rho} = \frac{4}{3}\pi NP$$
 両辺を微分すると $\Delta n \cong \frac{2}{9}\pi \frac{\left(\overline{n}^2+2\right)^2}{\overline{n}}\frac{\rho N}{M}\Delta P$

複屈折が、分極率差から計算できる.

繊維のような一軸対称構造の場合, $\Delta P = P_{_{//}} - P_{_{\perp}}$ $3\overline{P}=P_{_{/\!/}}+2P_{_\perp}$ (テンソルの不変量)とおけば, $\Delta P=rac{3}{2}ig(P_{_{/\!/}}-\overline{P}ig)$

$$\Delta P = \frac{3}{2} \left(P_{//} - \overline{P} \right)$$

具体的な結合分極率

2011 02 0000 0000 0000			
化学結合	P_L	P_{T}	Р
C-C	9.7 x 10 ⁻²⁵ cm ³	2.5	4.9
C-H	8.2	6.0	6.7
$C_{aro}\text{-}C_{aro}$	22.5	4.8	10.7
$C_{aro}\text{-}C_{ali}$	14.0	3.0	6.7
C=O	20.0	10.0	13.3
C-O	14.6	1.7	6.0
C≡C	29.0	10.7	16.8
C _{aro} -S	33.2	15.4	21.3

いくつかのポリマーの固有複屈折

ポリマー	固有複屈折 x 10	
PE	120	
PP	40 – 60	
PET	220 – 290	
PEN	490	
PS	負	
PA6	80 – 100	
PAN	-43	
PC	182	

PA6 1.53 $+NH+CH_2+CO+_n$