# 計算機ネットワーク 

開講クォーター：1－2Q
曜日•時限：火7－8限
講義室：IQ＠W834，2Q＠W93।

# COMPUTER NETWORKS 

横田理央
rioyokota＠gsic．titech．ac．jp


参考書


教科書

## 講義日程（2Q）

|  |  | 授業計画 |  | 課題 |
| :---: | :---: | :---: | :---: | :---: |
| 06／14 | 第9回 | $\begin{aligned} & \text { ネットワーク層 l } \\ & \text { ルーティング・輻輳制御 } \end{aligned}$ | 5 章 | ルーティングの種類を理解し輻輳制御手法を説明できる |
| 06／2 | 第10回 | $\begin{aligned} & \text { ネットワーク層2 } \\ & \text { インターネットとサービス品質 } \end{aligned}$ | 5 章 | インターネットの制御プロトコルを理解し ネットワーク間の接続について説明できる |
| 06／28 | 第 1 1 回 | $\begin{aligned} & \text { トランスポート層 l } \\ & \text { トランスポート・プロトコルの要素 } \end{aligned}$ | 6 章 | 誤り制御とフロー制御を理解し輻輳制御について説明できる |
| 07／05 | 第12回 | トランスポート層2 UDP と TCP | 6 章 | TCP の信頼性を理解し <br> TCP のコネクション管理を説明できる |
| 07／12 | 第13回 | アプリケーション層 DNS，電子メール，www | 7 章 | DNS，電子メール，www のしくみを理解し ストリーミング，P2P について説明できる |
| 07／26 | 第14回 | ネットワークセキュリティ1対称鍵暗号，公開鍵暗号 | 8 章 | 暗号アルゴリズムを理解し SHA－1，2 と RSA について説明できる |
| 08／02 | 第15回 | ネットワークセキュリティ 2 <br> デジタル署名，認証プロトコル | 8 章 | 電子メール，Web のセキュリティ <br> の脅威について把握できる |

## Network Security

Categories of network security
I．Secrecy（機密）
2．Authentication（認証）
3．Nonrepudiation（否認防止）
4．Integrity control（一貫性）
People who may cause security problems

| Adversary | Goal |
| :--- | :--- |
| Student | To have fun snooping on people＇s email |
| Cracker | To test out someone＇s security system；steal data |
| Sales rep | To claim to represent all of Europe，not just Andorra |
| Corporation | To discover a competitor＇s strategic marketing plan |
| Ex－employee | To get revenge for being fired |
| Accountant | To embezzle money from a company |
| Stockbroker | To deny a promise made to a customer by email |
| Identity thief | To steal credit card numbers for sale |
| Government | To learn an enemy＇s military or industrial secrets |
| Terrorist | To steal biological warfare secrets |

Kerckhoff＇sprinciple：
All algorithms must be public；only the keys are secret

## Cryptography

Categories of cryptography
I. Cipher: Character-for-character or bit-for-bit transformation
2. Code: Replaces one word with another word or symbol Navaho Indians code during world war II


Encryption model plaintext: Message to be encrypted key: Encryption key

$$
D_{K}\left(E_{K}(P)\right)=P
$$

ciphertext: Output of the encryption process intruder:Third party with malicious intent

## Substitution Ciphers

| plaintext： | abcdefghijk mmopqrstuvwxyz |
| :--- | :--- |
| ciphertext： | QWERTYUIOPASDFGHJKLZXCVBNM |

Monoalphabetic substitution cipher：e．g．Caesar＇s cipher
Attack（攻略法）：Take advantage of the statistical properties
of natural languages
I．Count the frequencies of all letters in the text
2．Look at diagrams and trigrams


## Transposition Ciphers



Plaintext<br>pleasetransferonemilliondollarsto myswissbankaccountsixtwotwo

Ciphertext
AFLLSKSOSELAWAIATOOSSCTCLNMOMANT ESILYNTWRNNTSOWDPAEDOBUOERIRICXB

Attack（攻略法）
I．First be aware that he is dealing with a transposition cipher
2．Make a guess at the number of columns
3．Reorder the columns

## One-Time-Pads

```
Message 1: 1001001 0100000 1101100 1101111 1110110 1100101 0100000 1111001 11011111110101 0101110
Pad 1: }\quad1010010100101111100101010101 10100101100011 0001011 0101010 1010111 1100110 0101011
Ciphertext: 0011011 1101011 0011110 0111010 0100100 00001100101011 1010011 011100000100110000101
Pad 2: }\quad10111100000111110100010100111010111 0100110 1000111 0111010 1001110 1110110 1110110
Plaintext 2: }10001011101100 1110110 1101001 1110011 0100000 1101100 1101001 11101101100101 1110011
```


## Drawbacks

I. Truly random (as opposed to pseudorandom) one-time pad values, which is a non-trivial requirement.
2. Secure generation and exchange of the one-time pad values, which must be at least as long as the message.
3. Careful treatment to make sure that it continues to remain secret, and is disposed of correctly preventing any reuse in whole or part —hence "one time".

## Quantum Cryptography




## Principles of Cryptography

## Redundancy

I. For TCP, almost every 3-byte message is valid
2. Intruders cannot read, but can manipulate the message
3. This problem can be solved by the addition of redundancy
4. However, adding redundancy makes it easier for cryptanalysts to break messages

## Freshness

I. To prevent active intruders from playing back old messages
2. One such measure is including in every message a timestamp
3. Measures other than timestamps will be discussed later

## Symmetric-key Algorithms

- Same key is used for encryption and decryption -

P-box

(a)

S-box

(b)

Product cipher

| $\mathrm{P}_{1}$ | $\mathrm{S}_{1}$ | $\mathrm{P}_{2}$ | $\mathrm{S}_{5}$ | $\mathrm{P}_{3}$ | $\mathrm{S}_{9}$ | $\mathrm{P}_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{S}_{2}$ |  | $\mathrm{S}_{6}$ |  | $\mathrm{S}_{10}$ |  |
|  | $\mathrm{S}_{3}$ |  | $\mathrm{S}_{7}$ |  | $\mathrm{S}_{11}$ |  |
|  | ${ }_{3}$ |  |  |  |  |  |
|  | $\mathrm{S}_{4}$ |  | $\mathrm{S}_{8}$ |  | $\mathrm{S}_{12}$ |  |

(c)

P-box: Can be made to perform any transposition and do it at practically the speed of light since no computation is involved

S-box:The 3-bit input selects one of the eight lines exiting from the first stage and sets it to I; all the other lines are 0 . The second stage is a P-box. The third stage encodes the selected input line in binary again

## DES — The Data Encryption Standard

1977 Developed by IBM NSA had discussions with IBM I28-bit reduced to 56 -bit

(a)

(b)
I. A 48-bit number, $E$, is constructed by expanding the 32 -bit $R_{i-1}$ according to a fixed transposition and duplication rule
2. E and Ki are XORed together
3. This output is then partitioned into eight groups of 6 bits each, each of which is fed into a different S-box
4. Each of the 64 possible inputs to an S-box is mapped onto a 4 - bit output
5. These $8 \times 4$ bits are passed through a P-box

## Triple DES

1979 IBM realized that the DES key length was too short Two keys and three stages are used
I. The plaintext is encrypted using DES in the usual way with $\mathrm{K}_{\text {I }}$
2. DES is run in decryption mode, using $K_{2}$ as the key
3. Another DES encryption is done with $\mathrm{K}_{1}$

(a)

Encryption

(b)

Decryption

## AES-The Advanced Encryption Standard

1997 NIST (National Institute of Standards and Technology) sponsored a contest for a new standard
I. The algorithm must be a symmetric block cipher.
2. The full design must be public.
3. Key lengths of $\mathrm{I} 28, \mathrm{I} 92$, and 256 bits must be supported.
4. Both software and hardware implementations must be possible.
5. The algorithm must be public or licensed on nondiscriminatory terms.

2000, NIST announced that it had selected Rijndael, by Joan Daemen and Vincent Rijmen

## Rijndael

```
#define LENGTH 16
#define NROWS 4
#define NCOLS 4
#define ROUNDS 10
typedef unsigned char byte;
/* # bytes in data block or key */
/* number of rows in state */
/* number of columns in state */
/* number of iterations */
/* unsigned 8-bit integer */
```

```
rijndael(byte plaintext[LENGTH], byte ciphertext[LENGTH], byte key[LENGTH])
```

rijndael(byte plaintext[LENGTH], byte ciphertext[LENGTH], byte key[LENGTH])
{
{
int r; /* loop index */
int r; /* loop index */
byte state[NROWS][NCOLS]; /* current state */
byte state[NROWS][NCOLS]; /* current state */
struct {byte k[NROWS][NCOLS];} rk[ROUNDS + 1]; /* round keys */
struct {byte k[NROWS][NCOLS];} rk[ROUNDS + 1]; /* round keys */
expand_key(key, rk);
expand_key(key, rk);
copy_plaintext_to_state(state, plaintext);
copy_plaintext_to_state(state, plaintext);
xor_roundkey_into_state(state, rk[0]);
xor_roundkey_into_state(state, rk[0]);
for (r=1;r <= ROUNDS; r++) {
for (r=1;r <= ROUNDS; r++) {
substitute(state);
substitute(state);
rotate_rows(state);
rotate_rows(state);
if (r < ROUNDS) mix columns(state);
if (r < ROUNDS) mix columns(state);
xor_roundkey_into_state(state, rk[r]);
xor_roundkey_into_state(state, rk[r]);
}
}
copy_state_to_ciphertext(ciphertext, state); /* return result */
copy_state_to_ciphertext(ciphertext, state); /* return result */
}

```
}
```


## Rijndael

The loop executes 10 iterations, one per round, transforming state on each iteration. The contents of each round is produced in four steps.
I. Do a byte-for-byte substitution on state. Each byte in turn is used as an index into an S-box to replace its value by the contents of that S-box entry. This step is a straight monoalphabetic substitution cipher.
2. Rotate each of the four rows to the left. Row 0 is rotated 0 bytes (i.e., not changed), row $I$ is rotated I byte, row 2 is rotated 2 bytes, and row 3 is rotated 3 bytes. This step diffuses the contents of the current data around the block.
3. Mix up each column independently of the other ones. The mixing is done using matrix multiplication in which the new column is the product of the old column and a constant matrix, with the multiplication done using the finite Galois field.
4. XOR the key for this round into the state array for use in the next round.


Round keys

## Cipher Modes

Electronic Codebook Mode


Cipher Block Chaining Mode


## Cipher Modes

## Cipher Feedback Mode


(a)

(b)

## Stream Cipher Mode


(a)

(b)

## Cipher Modes

## Counter Mode



Random access


## Other Ciphers

| Cipher | Author | Key length | Comments |
| :--- | :--- | ---: | :--- |
| DES | IBM | 56 bits | Too weak to use now |
| RC4 | Ronald Rivest | $1-2048$ bits | Caution: some keys are weak |
| RC5 | Ronald Rivest | $128-256$ bits | Good, but patented |
| AES (Rijndael) | Daemen and Rijmen | $128-256$ bits | Best choice |
| Serpent | Anderson, Biham, Knudsen | $128-256$ bits | Very strong |
| Triple DES | IBM | 168 bits | Good, but getting old |
| Twofish | Bruce Schneier | $128-256$ bits | Very strong; widely used |

## Cryptanalysis

Differential cryptanalysis: Can be used to attack any block cipher Linear cryptanalysis: XOR bits in the plaintext and ciphertext together and use the bias in the result to decipher faster
Power measurements: Processing a I takes more electrical energy than processing a 0
Timing analysis: If the then and else parts take different amounts of time

## Public-Key Algorithms

1976 Proposed by Diffie and Hellman at Stanford
I. $D(E(P))=P$.
2. It is exceedingly difficult to deduce $D$ from $E$.
3. E cannot be broken by a chosen plaintext attack.

RSA
I. Choose two large primes, p and q (typically 1024 bits).
2. Compute $n=p \times q$ and $z=(p-l) \times(q-I)$.
3. Choose a number relatively prime to z and call it d .
4. Find e such that $\mathrm{e} \times \mathrm{d}=\mathrm{I} \bmod \mathrm{z}$.


## Public－Key Algorithms

Fastest Integer Factorization Algorithm
GNFS（General Number Field Sieve）
$O\left(\exp \sqrt[3]{\frac{64}{9} b(\log b)^{2}}\right)$
RSA（Rivest－Shamir－Adleman）
Based on Galois fields（ガロア体）

DSA（Digital Signature Algorithm）
Discrete logarithm problem（離散対数）
ECDSA（Elliptic Curve Digital Signature Algorithm） Based on elliptic curves（楕円曲線）

DSA is generally faster in decryption but slower for encryption

## Digital Signatures

I. The receiver can verify the claimed identity of the sender.
2. The sender cannot later repudiate the contents of the message.
3. The receiver cannot possibly have concocted the message himself.

## Symmetric-Key Signatures



## Public-Key Signatures



## Digital Signature Standard (DSS)

1991, NIST proposed using a variant of the El Gamal public-key algorithm for its new DSS

DSS was criticized for being
I. Too secret (NSA designed the protocol for using El Gamal).
2. Too slow ( 10 to 40 times slower than RSA for checking signatures).
3. Too new (El Gamal had not yet been thoroughly analyzed).
4. Too insecure (fixed 512-bit key).

## Message Digests

This scheme is based on the idea of a one-way hash function that takes an arbitrarily long piece of plaintext and from it computes a fixed-length bit string. This hash function, MD, often called a message digest, has four important properties:
I. Given P , it is easy to compute MD ( P ).
2. Given $M D(P)$, it is effectively impossible to find $P$.
3. Given $P$, no one can find $P^{\prime}$ such that $M D\left(P^{\prime}\right)=M D(P)$.
4. A change to the input of even I bit produces a very different output.

Computing a message digest from a piece of plaintext is much faster than encrypting that plaintext with a public-key algorithm, so message digests can be used to speed up digital signature algorithms.


## SHA-I and SHA-2


I. Pad the message by adding a I bit to the end, followed by as many 0 bits as are necessary
2. A 64-bit number containing the message length before padding is ORed into the low-order 64 bits
3. SHA-I maintains five 32-bit variables, H 0 through H 4 , where the hash accumulates.
4. Each of the blocks $M_{0}$ through $M_{n-1}$ is now processed in turn.


## The Birthday Attack

Q. How many students do you need in a class before the probability o having two people with the same birthday exceeds I/2?
A. 23
Q. How many operations to subvert an m-bit message digest?
A. $2^{m / 2}$

Dear Dean Smith,
This [letter I message] is to give my [honest I frank] opinion of Prof. Tom Wilson, who is [a candidate |up] for tenure [now | this year]. I have [known | worked with] Prof. Wilson for [about | almost] six years. He is an [outstanding I excellent] researcher of great [talent | ability] known [worldwide | internationally] for his [brilliant | creative] insights into [many | a wide variety of] [difficult | challenging] problems.

Dear Dean Smith,
This [letter I message] is to give my [honest I frank] opinion of Prof. Tom Wilson, who is [a candidate $\mid$ up] for tenure [now I this year]. I have [known I worked with] Tom for [about | almost] six years. He is a [poor | weak] researcher not well known in his [field | area]. His research [hardly ever I rarely] shows [insight in | understanding of] the [key | major] problems of [the | our] day.

## Management of Public Keys

How to get each other's public keys to start the communication process?


Certificates
KDC key distribution center: Not scalable CA (Certification Authority):

```
I hereby certify that the public key
    19836A8B03030CF83737E3837837FC3s87092827262643FFA82710382828282A
belongs to
    Robert John Smith
    12345 University Avenue
    Berkeley, CA }9470
    Birthday: July 4, 1958
    Email: bob@superdupernet.com
```

X. 509 (Standard for Certificates)

| Field | Meaning |
| :--- | :--- |
| Version | Which version of X.509 |
| Serial number | This number plus the CA's name uniquely identifies the certificate |
| Signature algorithm | The algorithm used to sign the certificate |
| Issuer | X.500 name of the CA |
| Validity period | The starting and ending times of the validity period |
| Subject name | The entity whose key is being certified |
| Public key | The subject's public key and the ID of the algorithm using it |
| Issuer ID | An optional ID uniquely identifying the certificate's issuer |
| Subject ID | An optional ID uniquely identifying the certificate's subject |
| Extensions | Many extensions have been defined |
| Signature | The certificate's signature (signed by the CA's private key) |

Certificates are encoded using OSI ASN.I (Abstract Syntax Notation I)

## Public Key Infrastructures


Q. Where to store the certificates?
A. DNS servers, dedicated servers
Q. How to revoke a certificate?
A. Periodically issue a CRL (Certificate Revocation List)

## 講義日程（2Q）

|  |  | 授業計画 |  | 課題 |
| :---: | :---: | :---: | :---: | :---: |
| 06／14 | 第9回 | $\begin{aligned} & \text { ネットワーク層 l } \\ & \text { ルーティング・輻轃制御 } \end{aligned}$ | 5 章 | ルーティングの種類を理解し輻輳制御手法を説明できる |
| 06／2I | 第10回 | $\begin{aligned} & \text { ネットワーク層2 } \\ & \text { インターネットとサービス品質 } \end{aligned}$ | 5 章 | インターネットの制御プロトコルを理解し ネットワーク間の接続について説明できる |
| 06／28 | 第11回 | $\begin{aligned} & \text { トランスポート層 l } \\ & \text { トランスポート・プロトコルの要素 } \end{aligned}$ | 6 章 | 誤り制御とフロー制御を理解し輻軑制御について説明できる |
| 07／05 | 第12回 | トランスポート層2 UDP と TCP | 6 章 | TCP の信頼性を理解し <br> TCP のコネクション管理を説明できる |
| 07／12 | 第13回 | アプリケーション層 DNS，電子メール，www | 7 章 | DNS，電子メール，www のしくみを理解し ストリーミング，P2Pについて説明できる |
| 07／26 | 第14回 | ネットワークセキュリティ1対称鍵暗号，公開鍵暗号 | 8 章 | 暗号アルゴリズムを理解し SHA－1，2 とRSA について説明できる |
| 08／02 | 第15回 | ネットワークセキュリティ2 デジタル署名，認証プロトコル | 8 章 | 電子メール，Web のセキュリティ <br> の脅威について把握できる |

