計算機ネットワーク

開講クォーター: I-2Q

曜日・時限:火7-8限

講義室: IQ @ ₩834, 2Q @ ₩93I

<text>

rioyokota@gsic.titech.ac.jp

講義日程(2Q)

				अस सन
		授業計画		課題
06/14	第9回	ネットワーク層1	5章	ルーティングの種類を理解し
		ルーティング・輻輳制御	了 早	輻輳制御手法を説明できる
06/21	第10回	ネットワーク層2	5章	インターネットの制御プロトコルを理解し
		インターネットとサービス品質	つ 早	ネットワーク間の接続について説明できる
06/28	第11回	トランスポート層 1	6章	誤り制御とフロー制御を理解し
		トランスポート・プロトコルの要素		輻輳制御について説明できる
07/05	第12回	トランスポート層2	6章	TCP の信頼性を理解し
		UDP と TCP		TCP のコネクション管理を説明できる
07/12	第13回	アプリケーション層	7章	DNS, 電子メール, www のしくみを理解し
		DNS, 電子メール, www		ストリーミング,P2P について説明できる
07/26	第14回	ネットワークセキュリティ 1	8章	暗号アルゴリズムを理解し
		対称鍵暗号, 公開鍵暗号		SHA-1,2 と RSA について説明できる
08/02	第15回	ネットワークセキュリティ2	8章	電子メール,Web のセキュリティ
		デジタル署名,認証プロトコル		の脅威について把握できる

Network Security

Categories of network security

- I. Secrecy (機密)
- 2. Authentication (認証)
- 3. Nonrepudiation (否認防止)
- 4. Integrity control (一貫性)

People who may cause security problems

Adversary	Goal				
Student	To have fun snooping on people's email				
Cracker	To test out someone's security system; steal data				
Sales rep	To claim to represent all of Europe, not just Andorra				
Corporation	To discover a competitor's strategic marketing plan				
Ex-employee	To get revenge for being fired				
Accountant	To embezzle money from a company				
Stockbroker	To deny a promise made to a customer by email				
Identity thief	To steal credit card numbers for sale				
Government	To learn an enemy's military or industrial secrets				
Terrorist	To steal biological warfare secrets				

Kerckhoff'sprinciple:

All algorithms must be public; only the keys are secret

Cryptography

Categories of cryptography

- I. Cipher: Character-for-character or bit-for-bit transformation
- 2. Code: Replaces one word with another word or symbol

Navaho Indians code during world war II

Encryption model plaintext: Message to be encrypted key: Encryption key ciphertext: Output of the encryption process intruder: Third party with malicious intent

$$D_K(E_K(P)) = P$$

Substitution Ciphers

plaintext:a b c d e f g h i j k l m n o p q r s t u v w x y zciphertext:QWERTYUIOPASDFGHJKLZXCVBNM

Monoalphabetic substitution cipher: e.g. Caesar's cipher

Attack (攻略法):Take advantage of the statistical properties

of natural languages

- I. Count the frequencies of all letters in the text
- 2. Look at diagrams and trigrams

Transposition Ciphers

Plaintext

pleasetransferonemilliondollarsto myswissbankaccountsixtwotwo

Ciphertext

AFLLSKSOSELAWAIATOOSSCTCLNMOMANT ESILYNTWRNNTSOWDPAEDOBUOERIRICXB

Attack (攻略法)

- I. First be aware that he is dealing with a transposition cipher
- 2. Make a guess at the number of columns
- 3. Reorder the columns

One-Time-Pads

<u>Drawbacks</u>

- 1. Truly random (as opposed to pseudorandom) one-time pad values, which is a non-trivial requirement.
- 2. Secure generation and exchange of the one-time pad values, which must be at least as long as the message.
- Careful treatment to make sure that it continues to remain secret, and is disposed of correctly preventing any reuse in whole or part —hence "one time".

Quantum Cryptography

Principles of Cryptography

<u>Redundancy</u>

- I. For TCP, almost every 3-byte message is valid
- 2. Intruders cannot read, but can manipulate the message
- 3. This problem can be solved by the addition of redundancy
- 4. However, adding redundancy makes it easier for cryptanalysts to break messages

Freshness

- I. To prevent active intruders from playing back old messages
- 2. One such measure is including in every message a timestamp
- 3. Measures other than timestamps will be discussed later

- Same key is used for encryption and decryption -

P-box: Can be made to perform any transposition and do it at practically the speed of light since no computation is involved

S-box: The 3-bit input selects one of the eight lines exiting from the first stage and sets it to 1; all the other lines are 0. The second stage is a P-box. The third stage encodes the selected input line in binary again

DES — The Data Encryption Standard

- I. A 48-bit number, *E*, is constructed by expanding the 32-bit R_{i-1} according to a fixed transposition and duplication rule
- 2. E and Ki are XORed together
- 3. This output is then partitioned into eight groups of 6 bits each, each of which is fed into a different S-box
- 4. Each of the 64 possible inputs to an S-box is mapped onto a 4- bit output
- 5. These 8 × 4 bits are passed through a P-box

Triple DES

1979 IBM realized that the DES key length was too short Two keys and three stages are used

- I. The plaintext is encrypted using DES in the usual way with K₁
- 2. DES is run in decryption mode, using K_2 as the key
- 3. Another DES encryption is done with K₁

AES—The Advanced Encryption Standard

1997 NIST (National Institute of Standards and Technology) sponsored a contest for a new standard

- I. The algorithm must be a symmetric block cipher.
- 2. The full design must be public.
- 3. Key lengths of 128, 192, and 256 bits must be supported.
- 4. Both software and hardware implementations must be possible.
- 5. The algorithm must be public or licensed on nondiscriminatory terms.

2000, NIST announced that it had selected Rijndael, by Joan Daemen and Vincent Rijmen

Rijndael

#define LENGTH 16 #define NROWS 4 #define NCOLS 4 #define ROUNDS 10 typedef unsigned char byte; /* # bytes in data block or key */
/* number of rows in state */
/* number of columns in state */
/* number of iterations */
/* unsigned 8-bit integer */

```
rijndael(byte plaintext[LENGTH], byte ciphertext[LENGTH], byte key[LENGTH])
 int r;
                                                      /* loop index */
 byte state[NROWS][NCOLS];
                                                      /* current state */
 struct {byte k[NROWS][NCOLS];} rk[ROUNDS + 1]; /* round keys */
 expand_key(key, rk);
                                                      /* construct the round keys */
                                                      /* init current state */
 copy_plaintext_to_state(state, plaintext);
 xor_roundkey_into_state(state, rk[0]);
                                                      /* XOR key into state */
 for (r = 1; r \le ROUNDS; r++) {
                                                      /* apply S-box to each byte */
    substitute(state);
    rotate_rows(state);
                                                      /* rotate row i by i bytes */
    if (r < ROUNDS) mix_columns(state);
                                                      /* mix function */
    xor_roundkey_into_state(state, rk[r]);
                                                      /* XOR key into state */
 copy_state_to_ciphertext(ciphertext, state);
                                                     /* return result */
```

Rijndael

The loop executes 10 iterations, one per round, transforming state on each iteration. The contents of each round is produced in four steps.

- I. Do a byte-for-byte substitution on state. Each byte in turn is used as an index into an S-box to replace its value by the contents of that S-box entry. This step is a straight monoalphabetic substitution cipher.
- Rotate each of the four rows to the left. Row 0 is rotated 0 bytes (i.e., not changed), row 1 is rotated 1 byte, row 2 is rotated 2 bytes, and row 3 is rotated 3 bytes. This step diffuses the contents of the current data around the block.
- 3. Mix up each column independently of the other ones. The mixing is done using matrix multiplication in which the new column is the product of the old column and a constant matrix, with the multiplication done using the finite Galois field.
- 4. XOR the key for this round into the state array for use in the next round.

Cipher Modes

Electronic Codebook Mode

Cipher Block Chaining Mode

Cipher Modes

Cipher Feedback Mode

Cipher Modes

<u>Counter Mode</u>

Random access

Other Ciphers

Cipher	Author	Key length	Comments
DES	IBM	56 bits	Too weak to use now
RC4	Ronald Rivest	1-2048 bits	Caution: some keys are weak
RC5	Ronald Rivest	128-256 bits	Good, but patented
AES (Rijndael)	Daemen and Rijmen	128-256 bits	Best choice
Serpent	Anderson, Biham, Knudsen	128-256 bits	Very strong
Triple DES	IBM	168 bits	Good, but getting old
Twofish	Bruce Schneier	128-256 bits	Very strong; widely used

Cryptanalysis

Differential cryptanalysis: Can be used to attack any block cipher

Linear cryptanalysis: XOR bits in the plaintext and ciphertext together and use the bias in the result to decipher faster

Power measurements: Processing a 1 takes more electrical energy than processing a 0

Timing analysis: If the then and else parts take different amounts of time

Public-Key Algorithms

1976 Proposed by Diffie and Hellman at Stanford

- I. D(E(P)) = P.
- 2. It is exceedingly difficult to deduce D from E.
- 3. E cannot be broken by a chosen plaintext attack.

<u>RSA</u>

- I. Choose two large primes, p and q (typically 1024 bits).
- 2. Compute $n = p \times q$ and $z = (p I) \times (q I)$.
- 3. Choose a number relatively prime to z and call it d.
- 4. Find e such that $e \times d = 1 \mod z$.

Plaintext (P)			Ciphertext (C)		After decryption	
Symbolic	Numeric	P ³	P ³ (mod 33)	<u>C</u> ⁷	C ⁷ (mod 33)	Symbolic
S	19	6859	28	13492928512	19	S
U	21	9261	21	1801088541	21	U
Z	26	17576	20	128000000	26	Z
Α	01	1	1	1	01	Α
N	14	2744	5	78125	14	N
N	14	2744	5	78125	14	N
E	05	125	26	8031810176	05	E
\square		γ			~	

Sender's computation

Receiver's computation

Public-Key Algorithms

Fastest Integer Factorization Algorithm GNFS (General Number Field Sieve)

$$O\left(\exp\sqrt[3]{rac{64}{9}b(\log b)^2}
ight)$$

<u>RSA (Rivest-Shamir-Adleman)</u> Based on Galois fields (ガロア体)

<u>DSA (Digital Signature Algorithm)</u> Discrete logarithm problem (離散対数)

<u>ECDSA (Elliptic Curve Digital Signature Algorithm)</u> Based on elliptic curves (楕円曲線)

DSA is generally faster in decryption but slower for encryption

Digital Signatures

- I. The receiver can verify the claimed identity of the sender.
- 2. The sender cannot later repudiate the contents of the message.
- 3. The receiver cannot possibly have concocted the message himself.

Symmetric-Key Signatures

Public-Key Signatures

Digital Signature Standard (DSS)

1991, NIST proposed using a variant of the El Gamal public-key algorithm for its new DSS

DSS was criticized for being

- I. Too secret (NSA designed the protocol for using El Gamal).
- 2. Too slow (10 to 40 times slower than RSA for checking signatures).
- 3. Too new (El Gamal had not yet been thoroughly analyzed).
- 4. Too insecure (fixed 512-bit key).

Message Digests

This scheme is based on the idea of a one-way hash function that takes an arbitrarily long piece of plaintext and from it computes a fixed-length bit string. This hash function, MD, often called a message digest, has four important properties:

- I. Given P, it is easy to compute MD (P).
- 2. Given MD (P), it is effectively impossible to find P.
- 3. Given P, no one can find P' such that MD (P') = MD(P).
- 4. A change to the input of even 1 bit produces a very different output.

Computing a message digest from a piece of plaintext is much faster than encrypting that plaintext with a public-key algorithm, so message digests can be used to speed up digital signature algorithms.

SHA-I and SHA-2

- I. Pad the message by adding a 1 bit to the end, followed by as many 0 bits as are necessary
- 2. A 64-bit number containing the message length before padding is ORed into the low-order 64 bits
- 3. SHA-1 maintains five 32-bit variables, H0 through H4 , where the hash accumulates.
- 4. Each of the blocks M_0 through M_{n-1} is now processed in turn.

The Birthday Attack

Q. How many students do you need in a class before the probability of having two people with the same birthday exceeds 1/2? A. 23

Q. How many operations to subvert an m-bit message digest? A. $2^{m/2}$

Dear Dean Smith,

This [*letter* | *message*] is to give my [*honest* | *frank*] opinion of Prof. Tom Wilson, who is [*a candidate* | *up*] for tenure [*now* | *this year*]. I have [*known* | *worked with*] Prof. Wilson for [*about* | *almost*] six years. He is an [*outstanding* | *excellent*] researcher of great [*talent* | *ability*] known [*worldwide* | *internationally*] for his [*brilliant* | *creative*] insights into [*many* | *a wide variety of*] [*difficult* | *challenging*] problems.

Dear Dean Smith,

This [*letter* | *message*] is to give my [*honest* | *frank*] opinion of Prof. Tom Wilson, who is [*a candidate* | *up*] for tenure [*now* | *this year*]. I have [*known* | *worked with*] Tom for [*about* | *almost*] six years. He is a [*poor* | *weak*] researcher not well known in his [*field* | *area*]. His research [*hardly ever* | *rarely*] shows [*insight in* | *understanding of*] the [*key* | *major*] problems of [*the* | *our*] day.

Management of Public Keys

How to get each other's public keys to start the communication process?

<u>Certificates</u>

KDC key distribution center: Not scalable

CA (Certification Authority):

```
I hereby certify that the public key
19836A8B03030CF83737E3837837FC3s87092827262643FFA82710382828282A
belongs to
Robert John Smith
12345 University Avenue
Berkeley, CA 94702
Birthday: July 4, 1958
Email: bob@superdupernet.com
```

SHA-1 hash of the above certificate signed with the CA's private key

X.509 (Standard for Certificates)

Field	Meaning
Version	Which version of X.509
Serial number	This number plus the CA's name uniquely identifies the certificate
Signature algorithm	The algorithm used to sign the certificate
Issuer	X.500 name of the CA
Validity period	The starting and ending times of the validity period
Subject name	The entity whose key is being certified
Public key	The subject's public key and the ID of the algorithm using it
Issuer ID	An optional ID uniquely identifying the certificate's issuer
Subject ID	An optional ID uniquely identifying the certificate's subject
Extensions	Many extensions have been defined
Signature	The certificate's signature (signed by the CA's private key)

Certificates are encoded using OSIASN.I (Abstract Syntax Notation I)

Public Key Infrastructures

- Q. Where to store the certificates?
- A. DNS servers, dedicated servers
- Q. How to revoke a certificate?
- A. Periodically issue a CRL (Certificate Revocation List)

講義日程(2Q)

		授業計画		課題
06/14	第9回	ネットワーク層1	5章	ルーティングの種類を理解し
		ルーティング・輻輳制御	う 早	輻輳制御手法を説明できる
06/21	第10回	ネットワーク層2	5章	インターネットの制御プロトコルを理解し
		インターネットとサービス品質	J上	ネットワーク間の接続について説明できる
06/28	第11回	トランスポート層 1	6章	誤り制御とフロー制御を理解し
		トランスポート・プロトコルの要素		輻輳制御について説明できる
07/05	第12回	トランスポート層2	6章	TCP の信頼性を理解し
		UDP と TCP		TCP のコネクション管理を説明できる
07/12	第13回	アプリケーション層	7章	DNS, 電子メール, www のしくみを理解し
		DNS, 電子メール, www		ストリーミング,P2P について説明できる
07/26	第14回	ネットワークセキュリティ 1	8章	暗号アルゴリズムを理解し
		対称鍵暗号, 公開鍵暗号		SHA-1,2 と RSA について説明できる
08/02	第15回	ネットワークセキュリティ2	8章	電子メール,Web のセキュリティ
		デジタル署名,認証プロトコル		の脅威について把握できる