STEEERY N —7

w7 £ —5—:1-2Q
iEH - KFER: A7-8FF
BHEE IQ @WS34,20 @ W93l

COMPUTER hETWORKS

EHE R

rioyokota(@gsic.titech.ac.jp

TANEXBARN NiTRinalLL

SR

mailto:rioyokota@gsic.titech.ac.jp

maxdiE (20)

BEAHH R
o6/14 | mom | T7 1T TN 55| masnsnesmcss
o621 | wrom | 77T 55| 1 7y HoRRocsEes
0628 | wiim | 7T T N sk OF| memm oo s
07/05 | %51 21 Sgpy:;;:?gz 6% ggi gff%iffé@%mﬁfga
o712 w1 am | L ol PSS iyt

. — — 2L o
07126 | 148 | (L e, mpmy BT a1 & noh oo ci e
08/02 | s 1 5 | 7 P77 EF VT2 8 "YA—)Web DX 2l 74

TINELH, Bak7a k)l

DEBICOWTHIETEZ 3

Host 1

Application
(or session)

layer Transport

~~ address

T

Transport

The transport layer

entity

l

Network —
address
Network layer

Protocols

TCP
UDP

Host 2
Application
Application/transport (or session)
interface layer
'
‘ ‘ ‘ User
>[Segment} § Trangpon T
Transport entity l
protocol l Provider
\
Transport/network
interface Network layer
End-to-end

Error control
Flow control

Transport protocol

Primitive Packet sent Meaning
LISTEN (none) Block until some process tries to connect
CONNECT CONNECTION REQ. Actively attempt to establish a connection
SEND DATA Send information
RECEIVE (none) Block until a DATA packet arrives
DISCONNECT | DISCONNECTION REQ. | Request a release of the connection

Router ISP's equipment
P2
\i
O
F
LAN H2
Frame Packet Segment
header header header
/ / e
7 7 —Z
Segment payload
- Packet payload -
- Frame payload >

Connection request
segment received

‘--s

State diagram

IDLE

Connect primitive

PASSIVE

ESTABLISHMENT

PENDING

Connect primitive

PASSIVE
DISCONNECT
PENDING

primitive executed

executed

---------------- ESTABLISHED |-

executed
ACTIVE
ESTABLISHMENT
PENDING

Connection accepted
segment received)

Disconnection
request segment
received)

Disconnect
primitive

kexecuted

~|DISCONNECT

Disconnect

IDLE

ACTIVE

PENDING

J

-

Disconnection request
segment received

The socket primitives for TCP

Primitive Meaning
SOCKET Create a new communication endpoint
BIND Associate a local address with a socket
LISTEN Announce willingness to accept connections; give queue size
ACCEPT Passively establish an incoming connection
CONNECT | Actively attempt to establish a connection
SEND Send some data over the connection
RECEIVE Receive some data from the connection
CLOSE Release the connection

Host H1

Packet

ISP's equipment
P2
1
O
=N
F
7 EETmEme
LAN H2

-— Time

#include <sys/types.h>
#include <sys/socket.h>

#include <netinet/in.h>
#include <netdb.h>

#define SERVER_PORT 12345

#define BUF_SIZE 4096 /* block transfer size */

int main(int argc, char **argv)

{
int c, s, bytes;
char buf[BUF_SIZE]; /* buffer for incoming file */
struct hostent *h; /* info about server */
struct sockaddr_in channel; /* holds |IP address */

}

if (argc != 3) fatal("Usage: client server-name file-name");
h = gethostbyname(argv[1]); /* look up host’s |IP address */
if (!h) fatal("gethostbyname failed");

s = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);

if (s <0) fatal("socket");

memset(&channel, 0, sizeof(channel));

channel.sin_family= AF_INET,;
memcpy(&channel.sin_addr.s_addr, h->h_addr, h->h_length);
channel.sin_port= htons(SERVER_PORT);

¢ = connect(s, (struct sockaddr *) &channel, sizeof(channel));

if (¢ < 0) fatal("connect failed");

/* Connection is now established. Send file name including 0 byte at end. */
write(s, argv(2], strlen(argv(2])+1);

/* Go get the file and write it to standard output. */

while (1) {
bytes = read(s, buf, BUF_SIZE); /* read from socket */
if (bytes <= 0) exit(0); /* check for end of file */
write(1, buf, bytes); /* write to standard output */
}

fatal(char *string)

{

}

printf("%s\n", string);
exit(1);

Client code using sockets

/* arbitrary, but client & server must agree */

Primitive Meaning
SOCKET Create a new communication endpoint
BIND Associate a local address with a socket
LISTEN Announce willingness to accept connections; give queue size
ACCEPT Passively establish an incoming connection
CONNECT | Actively attempt to establish a connection
SEND Send some data over the connection
RECEIVE Receive some data from the connection
CLOSE Release the connection

bnciude <oysemt . Server code using sockets

#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

#define SERVER_PORT 12345 /= arbitrary, but client & server must agree */
#define BUF_SIZE 4096 /* block transfer size */
#define QUEUE_SIZE 10

int main(int argc, char *argv{])

{
ints, b, |, fd, sa, bytes, on = 1;
char buf(BUF_SIZE]; /= buffer for outgoing file */
struct sockaddr_in channel; /* holds IP address */
/* Build address structure to bind to socket. */
memset(&channel, 0, sizeof(channel)); /* zero channel */

channel.sin_family = AF_INET,;
channel.sin_addr.s_addr = htonl(INADDR_ANY);
channel.sin_port = htons(SERVER_PORT);

Create a new communication endpoint

Associate a local address with a socket

Announce willingness to accept connections; give queue size

Passively establish an incoming connection

Actively attempt to establish a connection

Send some data over the connection

Receive some data from the connection

Release the connection

/* Passive open. Wait for connection. */ Primitive
s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); /= create socket */
if (s < 0) fatal("socket failed"); SOCKET
setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (char *) &on, sizeof(on)); BIND
b = bind(s, (struct sockaddr *) &channel, sizeof(channel)); LISTEN
if (b < 0) fatal(*bind failed®); ACCEPT
| = listen(s, QUEUE_SIZE), /* specify queue size */ CONNECT
if (I < 0) fatal("listen failed"); SEND
Chﬁte)c(lﬁt{is now set up and bound. Wait for connection and process it. */ RECEIVE
sa = accepl(s, 0, 0); /= block for connection request */ CLOSE
if (sa < 0) fatal("accept failed");
read(sa, buf, BUF_SIZE); /= read file name from socket */
/* Get and return the file. */
fd = open(buf, O_RDONLY);, /* open the file to be sent back */
if (fd < 0) fatal("open failed®);
while (1) {
bytes = read(fd, buf, BUF_SIZE); /* read from file */
if (bytes <= 0) break; /* check for end of file »/
write(sa, buf, bytes); /* write bytes to socket */
}
close(fd); /= close file */
close(sa); /* close connection */

Router

\

Transport Protocols

®
\ Physical

communication channel

(a)

Host 1

Application TSAP 1208
process /

[]

[]

]

:\Transport
connection

/

NSAP

Router

Application
layer

Transport
layer

Network
layer

Data link
layer

Physical
layer

L‘<

(b)

Host 2

Network

/

Server 1

Server 2

T

~
TSAP 1522,

\

-

\

TSAP1836

/

NSAP

~-..-.---d)----.--.b----...'

Host

Initial Connection Protocol

Host 1 Host 2 Host 1 Host 2

Layer

((
))
((
))
((
))
((
))
{(
))
((
))
((
))
((
))

(@) (b)

Process Server
Instead of every conceivable server listening at a well-known TSAP, each machine

that wishes to offer services to remote users has a special process server that acts
as a proxy for less heavily used servers

Duplicate segments

|. How to prevent duplicate segments!?
> Label segments with sequence numbers that will not be reused within T secs

2. What if the node crashes?
> Require transport entities to be idle for T secs after a recovery

3. What if T is very large?

> Use the low-order k bits of a time-of-day clock

4. |s a clock-based scheme secure?

> Use pseudorandom initial sequence numbers
2"-1

/l

Actual sequence
0 | | | 1 numbers used
0O 30 60 90 120 150 180

Time Time

T
AE— et
w w '
g1 g :
= £ |
- -3 |
- - |
g > :
e 70 Restart after § :
4 60 crashwith70 &
w w |
|
|

Connection Establishment

Three-way handshake

Host 1 Host 2 Host 1 Host 2
Old duplicate

- Time
+
Q
= 5
Ll 7%
3 E;
W /]
-:’-7 X
O
f
\
%
- Time
-
(@)
7
®
)
\
A
-
(@)
=
1\
%

(@) (b)

Host 1

- ime

C

R(
W
Old duplicate
)
G

PAWVS (Protection Against VWrapped Sequence numbers)

Extend the 32-bit sequence number so that it will not wrap

within the maximum packet lifetime

Connection Release

Asymmetric Release Symmetric Release
Host 1 Host 2 Host 1 Host 2

e coantmer|
ACK Send DR

‘DR/" + start timer
Release
D AT A connection
ACK

DATA Send ACK
\
W (Timeout)

release

Time

No data are connection
delivered after
a disconnect
request
| Two-army Problem
Blue % Blue
B army B army

#1

E White army

Error Correction

tocare of \\\
address \\\

\\\ Home agent at
home address

Mobile host at
care of address

Data-link Layer
Hardware: router

Delay: | ys <

Sliding window

Sender 7 0 |
Xoe PN e PN
y { { - -+

6 ,2(#

*. . | T |

5 \<\ + __)/ 2 5% Y2 5% | 2
3

4 4 3 4 3

7 0 7 0

Receiver
7,0 7,0 74
DN PN e A
L) X7 5
5 y __>/ 2 5 % __>/ 2 B \(_ .)/’ 2
4—+_3 4 3 4 3

Transport Layer
Hardware: host machine
Delay: |00ms >

7 0
6,7‘ /\ 1
+- ~+

5 \v W/ 2
4 3
7.0

74 A'

|

5 \ W/ 2
4 3

Buffering
(a) fixed

Flow Control

-

size

R IR R

(b) variable size
(c) circular buffer

(@)

(b) \

Dynamic window management

A

0 T T T A O

-h wb wb wb wmb = b
oo O s, WO - O
.
.
.

Message

< request 8 buffers>
<ack = 15, buf = 4>
<seq = 0, data = m0>
<seq = 1, data = m1>
<seq = 2, data = m2>
<ack = 1, buf = 3>
<seq = 3, data = m3>
<seq = 4, data = m4>
<seq = 2, data = m2>
<ack = 4, buf = 0>
<ack = 4, buf = 1>
<ack = 4, buf = 2>
<seq = 5, data = m5>
<seq = 6, data = m6>
<ack = 6, buf = 0>
<ack = 6, buf = 4>

B

bt

0 T A O O O A A O

Comments

A wants 8 buffers

B grants messages 0-3 only

A has 3 buffers left now

A has 2 buffers left now

Message lost but A thinks it has 1 left
B acknowledges 0 and 1, permits 2-4
A has 1 buffer left

A has 0 buffers left, and must stop

A times out and retransmits
Everything acknowledged, but A still blocked
A may now send 5

B found a new buffer somewhere

A has 1 buffer left

A is now blocked again

A is still blocked

Potential deadlock

Unused
space

}Segment 1

N

>Segment 2

} Segment 3

>Segment 4

()

Multiplexing

Transport address

Layer o o ./
Network
4 // address
® T
3
* * *
¢ Router lines
1
Y To router Y Y Y
(a) (b)
Multiplexing Inverse Multiplexing

SCTP (Stream Control Transmission Protocol)

I

TCP

Crash Recovery

Host 1 Host 2
Host 1
Application Application
(or session) Application/transport (or session) Cr (seq
layer Transport | interface layer %
T/ address |,/
| | | w=R
Transport ='Seg_ment1 .| Transport E \M”‘P@
entity T Transport entity pe¥
protocol l l
Network — N QAT (seq
address Transport/network =X A Ck
Network layer interface Network layer \
(a)
Strategy used by receiving host
- First ACK, then write First write, then ACK -
Strategy used by
sending host AC(W) AWC C(AW) C(WA) WAC WC(A)
Always retransmit OK DUP OK OK DUP DUP
Never retransmit LOST OK LOST LOST OK OK
Retransmit in SO OK DUP LOST LOST DUP OK
Retransmit in S1 LOST OK OK OK OK DUP

SO = no segments outstanding
S| = one segment outstanding

= Protocol functions correctly
DUP = Protocol generates a duplicate message
LOST = Protocol loses a message

Congestion Control

) |) :
Ty Capacity |
e """ — Onset of |
& T | congestion !
2 Desired & |
- response @ \ !
8 8 :
5 \ _ Congestion) |
&5 \ collapse o, '
o) & [
O I
O I

- 1 -
Offered load (packets/sec) Offered load (packets/sec)

(a) (b)

power = load The load with the highest power represents an efficient
delay |oad for the transport entity to place on the network

Max-min fairness

A _ 2/3 _ 2/3 A
= gy
R1 1/3 R3 B
B
) 1/3\ 173 1/3 = »C
C
R4 1/3 1/3 R6 D

Congestion Control

Regulating the sending rate S

XCP (eXplicit Congestion Protocol)
Routers tell the sources the rate at
which they may send

Transmission
network Internal

congestion

ECN (Explicit Congestion Notification)
Routers tell the sources to slow down

/

Y

L

/

FAST TCP
Measures the roundtrip delay
e v~ 7 e

TCP with RED routers

Packet loss is used to signal congestion @ ©
~ Protocol Signal Explicit? Precise?
XCP Rate to use . Yes | Yes
TCP with ECN Congestion warning . Yes | No
FAST TCP End-to-end delay ‘ No . Yes
‘Compound TCP | Packet loss & end-to-end delay ’ No . Yes
CUBIC TCP Packet loss . No ’ No
TCP Packet loss | No | No |

Control Law

'
1
S
g ™™ Flow 1
©
§ 05
=2 ' 1
© '\ |
§ !~ Flow 2 starts e
l Flow 3 I~ Flow 2 stops
i RSt (i
0 bmmm : . .
1 4 g
Time (secs)

AIMD (Additive Increase Multiplicative Decrease)
Additive: y=x+b
Multiplicative: y=ax

|
Additive increase }
100% and decrease / o Start /
£ ° \\\ // ‘\ | 100% N /\
§= }// ,” Fairness line £ e
< / O - -
© / / = / Fairness line
c \ /) . o) //
3 N, 7 Optimal point c
3 /)'(\ o Multiplicative increase f, ’<\ N
g /// .\/\/ and decrease N > Optimal point
N
- d Lo 4/\/ - . g A Effici i
s e \ Efficiency line - N iciency line
// - \\\'/' 0 \\:—J
0 100% 0 User 1's bandwidth 100%

User 1's bandwidth

Wireless Issues

Transport with end-to-end congestion control (loss = congestion) [m S]

|4 ired lin ' ireless link
%ﬁ '/-W d link @[.-—C-V\I—l— --------- g

Sender Receiver

>l
Link layer retransmission
(loss = transmission error) [IJS]

\\l /,
s
TCP |

Internet Transport Protocols

/A

l UDP |

Slower but reliable
transfers

Typical
applications:
¢ Emall
¢« Web browsing

» Fast but non-
guaranteed transfers
(“best effort”)

» Typical applications:
¢« VoIP
* Music streaming

\,

20
o O

unicast

o ©

Lunicast multicast broadcast

ubDpP
HNTSUME BTG

UDP (User Datagram Protocol)

Source port Destination port

UDP length UDP checksum

|Pv4 Pseudoheader

Source address

Destination address

00000000 Protocol = 17 UDP length

|. Demultiplexing multiple processes using the ports
2. Optional end-to-end error detection

Remote Procedure Call

Client CPU Server CPU

3 Client Server
. a \ stub stub
Client
S

TN
A IServer

4

Operating system Y

A Operating system

_ 4 y,

N\

Limitations

Ui WPN —

Cannot pass pointers
Cannot pass arrays without specifying t

Cannot call function with arbitrary parameters (printf)

Cannot use global variables

Network

he size

Operations must be idempotent (DNS)

Realtime Transport Protocol

Ethernet P UDP RTP

User { Multimedia application hezider hezIder hea(|1er header
space RTP ¥
Socket interface RTP payload

i UDP

Kergci < IP <-— UDP payload ———
. Ethernet - IP payload -

- Ethernet payload -
(a) (b)
Service

|. Multiplex several real-time data streams onto a single stream of
UDP packets

2. UDP stream can be sent to a single destination (unicasting) or
to multiple destinations (multicasting)

3. Packets may be lost, delayed, corrupted

4. Retransmission is not a practical option since the retransmitted
packet would probably arrive too late to be useful

Realtime Transport Protocol

- 32 bits

l | | | N T I O O

-

[1111

Ver. |P|X CC M Payload type

Sequence number

Timestamp

Synchronization source identifier

Ver. :Version (currently at 2)

P: Indicates that the packet has been padded
X:Indicates that an extension header is present
CC: How many contributing sources are present

M: Application-specific marker bit

__

Payload type: Encoding algorithm (e.g., uncompressed 8-bit audio, MP3, etc.)

Sequence number: Used to detect lost packets

Timestamp: Reduce timing variability of streaming multimedia
Synchronization Source Identifier: Which stream the packet belongs to
Contributing Source Identifier: Streams being mixed are listed here

RTCP—The Real-time Transport Control Protocol

Provide feedback on delay, variation in delay or jitter, bandwidth, congestion, and
other network properties to the sources.

This information can be used by the encoding process to increase the data rate
(and give better quality) when the network is functioning well and to cut back
the data rate when there is trouble in the network.

For example, if the bandwidth increases or decreases during the transmission, the
encoding may switch from MP3 to 8-bit PCM to delta encoding as required.

Playout with Buffering and Jitter Control

Packet departs source |1||2||3||4

7

Packet arrives at buffer 1 2

Time in buffer

3

4

5

~11|12|3||4/|5/||6||7| s

Packet removed from buffer -

<—>§éap in playback

A W NN W NN NN SN SN SN SN N

10 15 20
Time (sec)

Playout with Buffering and Jitter Control

a a

g g |

48] 4y

Q. Q.

© °

c c

. O

E <Highjitter T - bowjmer
——

Minimum Delay —»- Delay —»-
delay

(due to speed of light)
(a) (b)

For a streaming audio or video player, buffers of about 10 seconds are often used
to ensure that the player receives all of the packets (that are not dropped in the
network) in time.

For live applications like videoconferencing, short buffers are needed for
responsiveness.

madiE)

R i
o6/14 | mol | 7 TN s 5%| puasnenmcas
o621 | wrom | 77T 55| 1 7y HoRRocsEes
0628 | wiim | 7T T N sk OF| memm oo s
07/05 | %51 21 tﬁgp‘/&zfiz;}gz 6% ggi gfﬁ%ifﬁ%&&a%?%
0712 w1 am | L TR Ayt P o CRATES

ot hd Tl
07126 | g1 am | L BT a1 & noh oo ci e
08/02 | s 1 5 | 7 P77 EF VT2 gzs| BFA—MWebDEX)7 4

FOyVES, BIETTF L

DEBICOWTHIETEZ 3

