1 Lecture - Introduction of the course, Finite and Infinite Sets

1.1 Introduction of the course

• name of the course: Calculus II

• instructor name: Jan Brezina

• email: brezina@math.titech.ac.jp

• room: main building H219

• teaching assistant: Murakami (murakami.h.ah@m.titech.ac.jp, H316)

About lecture

- purpose of the course: strengthen logical thinking and get deeper understanding of what we learned in spring semester
- advantage over other courses math and English
- why English: thinking in another language gives you new ways of looking at things
- can take lecture and exercise separately, but better together
- class is in English, tests too
- content is similar to Japanese classes

Class materials

- personal notes
- handouts
- any book in any language dealing with the topics of this course

Grading

- score 60 100 points is a pass
- depending on a person just pass or care about good score your choice
- grades from lecture and exercise are NOT related

Lecture grading

Midterm exam	80 points
Final exam	
Homework	20 points

- about homework
 - 8 homework
 - if you cant do your homework it indicates that you don't understand the lecture
 - the assignment of homework will be given with the content of Wednesday lecture
 - homework submission is before/after the following week's Tuesday lecture
 - late submissions are NOT accepted,
 - each properly submitted homework is worth 2 points, if you submit 4 or more, you get extra 2 points, if you submit 8 you get extra 4 points
 - homework that written last minute, empty, difficult to read, dirty, etc. is worth 0 points

Publishing of materials

- weekly on OCW-i,
- homework, solutions of homework, solution of tests, etc.

Consultation

- always welcome me or TA
- setup an appointment (personally, by email)
- come in group preferably
- consult with your classmates regularly

1.2 Finite and Infinite Sets

- cardinality,
- finite and infinite sets,
- countably infinite set,
- countably infinite set can be arranged into a sequence,
- countable and uncountable sets,
- examples of countable sets \mathbb{N} , $2\mathbb{N}$, $\mathbb{N} \times \mathbb{N}$, \mathbb{Q}^+ , \mathbb{Q} ,
- (0,1) and \mathbb{R} are uncountable

1.3 Homework

- 1) Prove the statement in Remark 4.1.
- 2) Prove Lemma 4.1.
- 3) Prove Theorem 4.4. (If you dare, prove it for any finite number of countable sets!)
- 4) Prove that if |A| = |B| and |B| = |C| then |A| = |C|. (transitive law)
- 5) Show that \mathbb{Z} and $S = \{\dots, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1, 2, 4, 8, \dots\}$ have the same cardinality.
- 6) Prove that the set A is countably infinite.
 - $A = \{\ln(n) : n \in \mathbb{Z}^+\} \subseteq \mathbb{R},$
 - $A = \{(m,n) \in \mathbb{Z}^+ \times \mathbb{Z}^+ | m \le n\},$
- 7) Prove that the set of all irrational numbers is uncountable.
- 8) If S is an infinite set, prove that S contains a countably infinite subset.