
3.1 What is a Linear Programming 

Problem?

Prices Worth Costs Finishing  Carpentry

Wooden soldiers $ 27 $ 10 $ 14 2 hours 1 hour

Wooden trains $ 21 $ 9 $ 10 1 hour 1 hour

Conditions: no more than 100 hours of finishing hours weekly 

no more than 80 hours of carpentry hours weekly 

at most 40 demand of soldiers weekly

unlimited demand of trains

Find to maximize weekly profit

Ex.1  Manufacture of toys



Solution

Decision Variables

x1: number of soldiers produced each week

Objective Function

Fixed costs do not depend on the value x1 and x2

Weekly revenues = 27 x1 + 21 x2

Weekly raw material costs = 10 x1 + 9 x2

Weekly variable costs = 14 x1 + 10 x2

Weekly profit = (27-10-14) x1 + (21-9-10) x2  = 3 x1 + 2 x2

x2: number of trains produced each week 

Max  z = 3 x1 + 2 x2

Objective function coefficient



Constraints

Total finishing hrs. per week  = 2 x1 + 1 x2   2 x1 + x2  < 100

Total carpentry hrs. per week  = 1 x1 + 1 x2      x1 + x2  < 80

At most 40 demand of soldiers per week x1 < 40

Technological coefficient, Right-hand side (rhs)

Sign Restriction

Assume nonnegative values for decision variable

Max  z = 3 x1 + 2 x2

Optimization model

2 x1 + x2  < 100

x1 + x2  < 80

x1 < 40

Subject to (s.t.) x1 > 0

x2 > 0



Assumption and Definition

1. Proportionality assumption of Linear Programming

2. Additivity assumption of Linear Programming

3. Divisibility assumption

--- Integer programming problem

4. Certainty assumption

5. Feasible region

6. Optimal solution



3.2 The Graphical Solution of Two-Variable

LP with only two variables can be solved graphically.
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Finding the Feasible Solution
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Graphical Solution of Minimization Problems
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3.3 Special Cases 

Some types of LPs do not have unique optimal solution  

An infinite number of optimal solutions        

- Alternative or multiple optimal solutions
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3.4 Diet Problem
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s.t.

Satisfy daily nutritional requirement at minimum cots

Daily calorie intake at least 500 

Daily chocolate intake at least 6 

Daily sugar intake at least 10 

Daily fat intake at least 8

Optimal Solution
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3.5 Work-Scheduling Problem

Post office to minimize the number of full-time employees

Incorrect solution Correct solution

7621    min xxxxz 

xi: number of employees working 

on day i

7621    min xxxxz 

xi: number of employees beginning to 

work on day i
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3.6 Capital Budgeting Problem

*Net Present Value (NPV)      r: annual interest rate

$1 now = $(1+r) k k years from now

1 dollar k years from now is equivalent to receiving $(1+r)-k now

Determine what fraction of each investment to purchase

54321 3914161613  max xxxxxz 

To maximize the NPV earned from investment

xi: fraction of investment i purchased 
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