3.1 What is a Linear Programming Problem?

Ex. 1 Manufacture of toys

	Prices	Worth Costs	Finishing Carpentry		
Wooden soldiers	$\$ 27$	$\$ 10$	$\$ 14$	2 hours	1 hour
Wooden trains	$\$ 21$	$\$ 9$	$\$ 10$	1 hour	1 hour

Conditions: no more than 100 hours of finishing hours weekly no more than 80 hours of carpentry hours weekly at most 40 demand of soldiers weekly unlimited demand of trains

Find to maximize weekly profit

Solution

Decision Variables

x_{1} : number of soldiers produced each week
x_{2} : number of trains produced each week

Objective Function

Fixed costs do not depend on the value x 1 and x 2
Weekly revenues $=27 x_{l}+21 x_{2}$
Weekly raw material costs $=10 x_{1}+9 x_{2}$
Weekly variable costs $=14 x_{1}+10 x_{2}$
Weekly profit $=(27-10-14) x_{1}+(21-9-10) x_{2}=3 x_{1}+2 x_{2}$

$$
\operatorname{Max} z=3 x_{l}+2 x_{2}
$$

Objective function coefficient

Constraints

Total finishing hrs. per week $=2 x_{1}+1 x_{2} \quad 2 x_{1}+x_{2} \leq 100$
Total carpentry hrs. per week $=1 x_{1}+1 x_{2} \quad x_{1}+x_{2} \leq 80$
At most 40 demand of soldiers per week $\quad x_{1} \leq 40$
Technological coefficient, Right-hand side (rhs)

Sign Restriction

Assume nonnegative values for decision variable
Optimization model
Max $z=3 x_{1}+2 x_{2}$
Subject to (s.t.) $2 x_{1}+x_{2} \leq 100 \quad x_{1} \geq 0$

$$
\begin{array}{ll}
x_{1}+x_{2} \leq 80 & x_{2} \geq 0 \\
x_{1} \leq 40
\end{array}
$$

Assumption and Definition

1. Proportionality assumption of Linear Programming
2. Additivity assumption of Linear Programming
3. Divisibility assumption
--- Integer programming problem
4. Certainty assumption
5. Feasible region
6. Optimal solution

3.2 The Graphical Solution of Two-Variable

LP with only two variables can be solved graphically.
$x_{2} \uparrow \quad 2 x_{1}+3 x_{2} \leq 6$

$$
x_{2}=2-\frac{2}{3} x_{1}
$$

Graphical Solution of Minimization Problems

3.3 Special Cases

Some types of LPs do not have unique optimal solution
An infinite number of optimal solutions

- Alternative or multiple optimal solutions

$$
\begin{gathered}
\max z=3 x_{1}+2 x_{2} \\
\text { s.t. } \frac{1}{40} x_{1}+\frac{1}{60} x_{2} \leq 1 \\
\frac{1}{50} x_{1}+\frac{1}{50} x_{2} \leq 1 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

Infeasible

$\max z=3 x_{1}+2 x_{2}$
s.t. $\frac{1}{40} x_{1}+\frac{1}{60} x_{2} \leq 1$
$\frac{1}{50} x_{1}+\frac{1}{50} x_{2} \leq 1$

Unbounded

$$
\begin{equation*}
\max z=2 x_{1}-x_{2} \tag{19}
\end{equation*}
$$

s.t. $x_{1}-x_{2} \leq 1$
$2 x_{1}+x_{2} \geq 6$

3.4 Diet Problem

Satisfy daily nutritional requirement at minimum cots $\min z=50 x_{1}+20 x_{2}+30 x_{3}+80 x_{4}$
s.t. $400 x_{1}+200 x_{2}+150 x_{3}+500 x_{4} \geq 500$ Daily calorie intake at least 500

$$
\begin{array}{lrll}
3 x_{1}+2 x_{2} & & \geq 6 \\
2 x_{1}+2 x_{2}+ & 4 x_{3}+ & 4 x_{4} \geq 10 & \text { Daily chocolate intake at least } 6 \\
2 x_{1}+4 x_{2}+ & x_{3}+ & 5 x_{4} \geq 8 \\
x_{1}, x_{2}, x_{3}, x_{4} \geq 0 & & & \text { Daily sugar intake at least } 10 \\
& &
\end{array}
$$

Optimal Solution

$$
\begin{aligned}
& x_{1}, x_{4}=0, x_{2}=3, x_{3}=1 \\
& z=50 x_{1}+20 x_{2}+30 x_{3}+80 x_{4}=90
\end{aligned}
$$

3.5 Work-Scheduling Problem

Post office to minimize the number of full-time employees

Incorrect solution
$\min z=x_{1}+x_{2}+\cdots+x_{6}+x_{7}$
x_{i} : number of employees working on day i

Day 1: Monday, Day 2: Tuesday,...
s.t. $\quad x_{1} \geq 17$
$x_{2} \geq 13$
$x_{3} \geq 15$
$x_{4} \geq 19$
$x_{5} \geq 14$
$x_{6} \geq 16$
$x_{7} \geq 11$
$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7} \geq 0$

Correct solution
$\min z=x_{1}+x_{2}+\cdots+x_{6}+x_{7}$
x_{i} : number of employees beginning to work on day i Day 1: Monday, Day 2: Tuesday,...

$$
\begin{array}{ll}
\text { s.t. } & x_{1}+x_{4}+x_{5}+x_{6}+x_{7} \geq 17 \\
& x_{1}+x_{2}+x_{5}+x_{6}+x_{7} \geq 13 \\
& x_{1}+x_{2}+x_{3}+x_{6}+x_{7} \geq 15 \\
& x_{1}+x_{2}+x_{3}+x_{4}+x_{7} \geq 19 \\
& x_{1}+x_{2}+x_{3}+x_{4}+x_{5} \geq 14 \\
& x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \geq 16 \\
& x_{3}+x_{4}+x_{5}+x_{6}+x_{7} \geq 11 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7} \geq 0
\end{array}
$$

3.6 Capital Budgeting Problem

Determine what fraction of each investment to purchase
$\max z=13 x_{1}+16 x_{2}+16 x_{3}+14 x_{4}+39 x_{5}$
To maximize the NPV earned from investment
x_{i} : fraction of investment i purchased

$$
\begin{array}{lll}
\text { s.t. } & 11 x_{1}+53 x_{2}+5 x_{3}+5 x_{4}+29 x_{5} \leq 40 & \text { Cash flow in time } 0 \\
& 3 x_{1}+6 x_{2}+5 x_{3}+x_{4}+34 x_{5} \leq 20 & \text { Cash flow in time } 1 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \leq 1 & \text { Fraction condition } \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0 &
\end{array}
$$

*Net Present Value (NPV) r: annual interest rate
$\$ 1$ now $=\$(1+r)^{k} k$ years from now
1 dollar k years from now is equivalent to receiving $\$(1+r)^{-k}$ now

