2. Fundamentals of Probability Models

2.1 Events and Probability
2.2 Elements of Set Theory
2.3 Mathematics of Probability
2.4 Concluding Summary

Ex. 2.2

Designing a left turn
Probability of 5 or more cars waiting
No. of cars No. of observation Relative frequency
$\left.\begin{array}{rrc}0 & 4 & 4 / 60 \\ 1 & 16 & 16 / 60 \\ 2 & 20 & 20 / 60 \\ 3 & 14 & 14 / 60 \\ 4 & 3 & 3 / 60 \\ 5 & 2 & 2 / 60 \\ 6 & 1 & 1 / 60 \\ 7 & 0 & 0 \\ 8 & 0 & 0\end{array}\right\}=3 / 60$

2.2.1 Important Definitions

Sample Space: The set of all possibilities in a probabilistic problem. Discrete sample space or Continuous sample space Finite sample space or infinite sample space
Sample Point: Each of the individual possibilities.
Event: A subset of the sample space.

Impossible event " Φ " is the event with no sample point
Certain event " S " is the event containing all the sample points in a same sample space. The sample space itself.

Complementary event " \bar{E} " contains all the sample points in S that are not in E for an event E in a sample space S .

Combination of Events

Venn diagram

Union " \cup " The occurrence of E1 or E2 or both ("or" is used in an inclusive sense, "and/or")
Intersection " \cap " The joint occurrence of E1 and E2 $\mathbf{E}_{1} \cap \mathbf{E}_{2}=\mathbf{E}_{1} \mathbf{E}_{2}$
Mutually exclusive event Disjoint of E1 and E2.

$$
\mathrm{E} 1 \mathrm{E} 2=\Phi
$$

Collectively exhaustive event
Union of all the events constitute the sample space

2.2.2 Mathematical Operations of Sets

Equality of sets
Two sets are equal if and only if both sets contain exactly the same sample points

$$
\begin{array}{ll}
A \bigcup \phi=A, & A \cap \phi=\phi \\
A \bigcup A=A, & A \cap A=A \\
A \bigcup S=S, & A \bigcap S=A \tag{2.1c}
\end{array}
$$

Complementary sets

$$
\begin{align*}
& E \bigcup \bar{E}=S \tag{2.2a}\\
& E \bigcap \bar{E}=\phi \\
& (\overline{\bar{E}})=E \tag{2.2b}
\end{align*}
$$

Commutative rule

$$
\begin{aligned}
& A \bigcup B=B \cup A \\
& A B=B A
\end{aligned}
$$

Associative rule

$$
\begin{aligned}
& (A \cup B) \cup C=A \cup(B \cup C) \\
& (A B) C=A(B C)
\end{aligned}
$$

Distributive rule

$$
\begin{aligned}
& (A \cup B) C=A C \cup B C \\
& (A B) \cup C=(A \cup C)(B \cup C)
\end{aligned}
$$

De Morgan's rule

$$
\begin{align*}
& \overline{E_{1} \bigcup E_{2}}=\overline{E_{1}} \cap \overline{E_{2}}=\overline{E_{1}} \overline{E_{2}} \\
& \overline{E_{1} \cup E_{2} \cup \cdots \bigcup E_{n}}=\overline{E_{1}} \overline{E_{2}} \cdots \overline{E_{n}} \tag{2.3a}\\
& \overline{E_{1} \bigcup \overline{E_{2}} \bigcup \cdots \bigcup \overline{E_{n}}}=E_{1} E_{2} \cdots E_{n} \\
& \overline{E_{1} E_{2} \cdots E_{n}}=\overline{E_{1}} \bigcup \overline{E_{2}} \bigcup \cdots \cup \overline{E_{n}} \tag{2.3b}
\end{align*}
$$

Duality relation:

"The complement of unions and intersections is equal to the intersections and unions of the respective complements."

$$
\begin{aligned}
& \overline{A \bigcup B C}=\bar{A} \cap \overline{B C}=\bar{A}(\bar{B} \bigcup \bar{C})=\bar{A} \bar{B} \bigcup \bar{A} \bar{C} \\
& \overline{(A \bigcup B) C}=\overline{(A \bigcup B) \bigcup \bar{C}}=(\bar{A} \bar{B}) \bigcup \bar{C}
\end{aligned}
$$

$\overline{E_{1} \cup E_{2}}=\overline{E_{1}} \overline{E_{2}}$

2. Basic Probability Concepts

2.1 Events and Probability
2.2 Elements of Set Theory
2.3 Mathematics of Probability
2.4 Concluding Summary

2.3.1 Addition Rule

Axioms of Probability

1) Event E in a sample space S

$$
\begin{equation*}
\mathrm{P}(\mathrm{E}) \geq \theta \tag{2.4}
\end{equation*}
$$

2) For the certain event S

$$
\begin{equation*}
P(S)=1 \tag{2.5}
\end{equation*}
$$

3) Events E_{1} and E_{2} are mutually exclusive

$$
\begin{equation*}
P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right) \tag{2.6}
\end{equation*}
$$

If E_{1} and E_{2} are not mutually exclusive

$$
\begin{equation*}
P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} E_{2}\right) \tag{2.8}
\end{equation*}
$$

4) $P(\overline{\mathrm{E}})=1-\mathrm{P}(\mathrm{E})$

Ex. 2.13

A: Definitely completed
B: Questionable
C: Definitely incomplete

1) Sample Space?
2) Probability of exactly one job being completed ?

What is $\mathrm{P}\left(\mathrm{E}_{1} \cup \mathrm{E}_{2}\right)$?
E_{1} : Job 1 definitely completed

$$
\mathrm{E}_{1} \supset\{\mathrm{AA}, \mathrm{AB}, \mathrm{AC}\}
$$

E_{2} : Job 2 definitely completed

$$
\mathrm{E}_{2} \supset\{\mathrm{AA}, \mathrm{BA}, \mathrm{CA}\}
$$

2.3.2 Conditional Probability

Conditional Probability $\mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{E}_{2}\right)$:

Probability of an event assuming another event has occurred

$$
\begin{align*}
& P\left(E_{1} \mid E_{2}\right)=\frac{P\left(E_{1} E_{2}\right)}{P\left(E_{2}\right)} \tag{2.11}\\
& \mathrm{P}\left(\overline{\mathrm{E}_{1}} \mid \mathrm{E}_{2}\right)=1-\mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{E}_{2}\right) \tag{2.12}
\end{align*}
$$

reconstituted sample space

Ex. 2.18

Straight ahead $=\mathrm{E}_{1}$, Turn right $=\mathrm{E}_{2}$, Turn left $=\mathrm{E}_{3}$
$\mathrm{E}_{1}, \mathrm{E}_{2}$ and E_{3} are mutually exclusive and collectively exhausted.
(a) $\mathrm{P}\left(\mathrm{E}_{1}\right)=2.0 \mathrm{P}\left(\mathrm{E}_{2}\right), \quad \mathrm{P}\left(\mathrm{E}_{2}\right)=2.0 \mathrm{P}\left(\mathrm{E}_{3}\right)$

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{E}_{1}\right)+\left(\mathrm{E}_{2}\right)+\mathrm{P}\left(\mathrm{E}_{3}\right)=1.0 \Rightarrow & 4.0 \mathrm{P}\left(\mathrm{E}_{3}\right)+2.0 \mathrm{P}\left(\mathrm{E}_{3}\right)+\mathrm{P}\left(\mathrm{E}_{3}\right)=1.0 \\
& \mathrm{P}\left(\mathrm{E}_{3}\right)=1 / 7=0.1429
\end{aligned}
$$

(b) $P\left(E_{2} \mid E_{2} \cup E_{3}\right)=P\left[E_{2} \cap\left(E_{2} \cup E_{3}\right)\right] / P\left(E_{2} \cup E_{3}\right)$

$$
\begin{aligned}
& =P\left(\mathrm{E}_{2}\right) / \mathrm{P}\left(\mathrm{E}_{2} \cup \mathrm{E}_{3}\right)=2 / 7 /(2 / 7+1 / 7) \\
& =2 / 3=0.6667
\end{aligned}
$$

(c) $P\left(\overline{E_{2}} \mid E_{2} \cup E_{3}\right)=1-P\left(E_{2} \mid E_{2} \cup E_{3}\right)=1-2 / 3=1 / 3$

2.3.3 Multiplication Rule

$$
\begin{equation*}
\mathrm{P}\left(\mathrm{E}_{1} \mathrm{E}_{2}\right)=\mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{E}_{2}\right) \mathrm{P}\left(\mathrm{E}_{2}\right), \mathrm{P}\left(\mathrm{E}_{1} \mathrm{E}_{2}\right)=\mathrm{P}\left(\mathrm{E}_{2} \mid \mathrm{E}_{1}\right) \mathrm{P}\left(\mathrm{E}_{1}\right) \tag{2.14}
\end{equation*}
$$

E_{1} and E_{2} are statistically independent.

$$
\begin{align*}
& \mathrm{P}\left(\mathrm{E}_{2} \mid \mathrm{E}_{1}\right)=\mathrm{P}\left(\mathrm{E}_{2}\right), \quad \mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{E}_{2}\right)=\mathrm{P}\left(\mathrm{E}_{1}\right) \tag{2.13}\\
& \mathrm{P}\left(\mathrm{E}_{1} \mathrm{E}_{2}\right)=\mathrm{P}\left(\mathrm{E}_{1}\right) \mathrm{P}\left(\mathrm{E}_{2}\right) \tag{2.15}
\end{align*}
$$

Three Events

$$
\begin{align*}
& \mathrm{P}\left(\mathrm{E}_{1} \mathrm{E}_{2} \mathrm{E}_{3}\right)=\mathrm{P}\left(\mathrm{E}_{1} \mathrm{E}_{2} \mid \mathrm{E}_{3}\right) \mathrm{P}\left(\mathrm{E}_{3}\right) \\
& \mathrm{P}\left(\mathrm{E}_{1} \mathrm{E}_{2} \mathrm{E}_{3}\right)=\mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{E}_{2} \mathrm{E}_{3}\right) \mathrm{P}\left(\mathrm{E}_{2} \mid \mathrm{E}_{3}\right) \mathrm{P}\left(\mathrm{E}_{3}\right) \tag{2.14a}
\end{align*}
$$

$\mathrm{E}_{1}, \mathrm{E}_{2}$ and E_{3} are statistically independent.

$$
\begin{equation*}
\mathrm{P}\left(\mathrm{E}_{1} \mathrm{E}_{2} \mathrm{E}_{3}\right)=\mathrm{P}\left(\mathrm{E}_{1}\right) \mathrm{P}\left(\mathrm{E}_{2}\right) \mathrm{P}\left(\mathrm{E}_{3}\right) \tag{2.15a}
\end{equation*}
$$

Mutually exclusive

If the occurrence of one event precludes the occurrence of another event
> Addition rule

Statistically independent
If the occurrence of one event does not affect the probability of another event
> Multiplication rule

Ex. Toss a coin

- heads or tails: Mutually exclusive
- first trial and second trial: Statistically independent

Ex. 2.20 Failure of Foundation

$$
\begin{array}{ll}
\mathrm{B}: \text { Failure of Bearing Capacity } & \mathrm{P}(\mathrm{~B})=0.001 \\
\mathrm{~S}: \quad \text { by Excessive Settlement } & \mathrm{P}(\mathrm{~S})=0.008 \\
\mathrm{P}(\mathrm{~B} \mid \mathrm{S})=0.1 &
\end{array}
$$

a) Probability of failure of foundation

$$
\begin{aligned}
\mathrm{P}(\mathrm{~B} \cup \mathrm{~S}) & =\mathrm{P}(\mathrm{~B})+\mathrm{P}(\mathrm{~S})-\mathrm{P}(\mathrm{BS})=\mathrm{P}(\mathrm{~B})+\mathrm{P}(\mathrm{~S})-\mathrm{P}(\mathrm{~B} \mid \mathrm{S}) \mathrm{P}(\mathrm{~S}) \\
& =0.001+0.008-0.1 \times 0.008=0.0082
\end{aligned}
$$

b) Probability of excessive settlement but no failure in bearing capacity

$$
\begin{aligned}
\mathrm{P}(\mathrm{~S} \overline{\mathrm{~B}}) & =\mathrm{P}(\overline{\mathrm{~B}} \mid \mathrm{S}) \mathrm{P}(\mathrm{~S})=(1-\mathrm{P}(\mathrm{~B} \mid \mathrm{S})) \mathrm{P}(\mathrm{~S}) \\
& =(1-0.1) 0.008=0.0072
\end{aligned}
$$

$$
P(B \mid S) \leq 1 / 8 \quad \text { Why? }
$$

2.3.4 Theorem of Total Probability

$\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots \mathrm{E}_{\mathrm{n}}$: mutually exclusive and collectively exhaustive events

$$
\begin{align*}
& \quad E_{i} \cap E_{j}=\Phi, \quad E_{1} \cup E_{2} \cup, \ldots \cup E_{n}=S \\
& A=A S \\
&=A\left(E_{1} \cup E_{2} \cup \ldots \cup E_{n}\right) \\
&=A E_{1} \cup A E_{2} \cup, \ldots \cup A_{n} \\
& P(A)=P\left(A E_{1}\right)+P\left(A E_{2}\right)+\ldots \ldots+P\left(A E_{n}\right) \\
&=P\left(A \mid E_{1}\right) P\left(E_{1}\right)+P\left(A \mid E_{2}\right) P\left(E_{2}\right)+\ldots+P\left(A \mid E_{n}\right) P\left(E_{n}\right) \tag{2.19}\\
&=\sum_{i}^{n} P\left(A \mid E_{i}\right) P\left(E_{i}\right) \\
& \hline E_{2} \\
& \hline
\end{align*}
$$

Ex. 2.27

F: Failure S: Storm T: Tornado H: Hit

$$
\begin{aligned}
P(F)= & P(F \mid S T H) P(S T H)+P(F \mid S T \bar{H}) P(S T \bar{H}) \\
& +P(F \mid S \bar{T}) P(S \bar{T})+P(F \mid \bar{S} \bar{T}) P(\bar{S} \bar{T}) \quad P(\bar{S} T)=\phi \\
P(S T H)= & P(H \mid S T) P(T \mid S) P(S)=0.01875 \\
P(S T \bar{H})=P(\bar{H} \mid S T) P(T \mid S) P(S)=0.10625 &
\end{aligned}
$$

$$
P(F \mid S \bar{T})=0.05
$$

$$
P(S \bar{T})=P(\bar{T} \mid S) P(S)
$$

$$
=0.75 \times 0.5=0.375
$$

$$
P(F \mid \bar{S} \bar{T})=0.0
$$

$$
P(F)=1.0 \times 0.01875+0.1 \times 0.10625
$$

$$
+0.05 \times 0.375=\underline{0.04812}
$$

$\overline{\mathrm{S}}: 0.5$	0.0		$\begin{aligned} & \overline{\mathrm{H}}: \\ & 0.85 \end{aligned}$
S:0.5	0.05	0.1	
25		1.0	H:
	$\overline{\mathbf{T}}: 0.75$	T:0.25	

2.3.5 Bayes' Theorem

$\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots \mathrm{En}$: mutually exclusive and collectively exhaustive events

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{AE}_{\mathrm{i}}\right)=\mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{E}_{\mathrm{i}}\right) \\
& \mathrm{P}\left(\mathrm{E}_{\mathrm{i}} \mathrm{~A}\right)=\mathrm{P}\left(\mathrm{E}_{\mathrm{i}} \mid \mathrm{A}\right) \mathrm{P}(\mathrm{~A}) \\
& \mathrm{P}\left(\mathrm{E}_{\mathrm{i}} \mid \mathrm{A}\right) \mathrm{P}(\mathrm{~A})=\mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{E}_{\mathrm{i}}\right)
\end{aligned}
$$

$$
\begin{align*}
P\left(E_{i} \mid A\right) & =\frac{P\left(A \mid E_{i}\right) P\left(E_{i}\right)}{P(A)} \tag{2.20}\\
& =\frac{P\left(A \mid E_{i}\right) P\left(E_{i}\right)}{\sum_{j} P\left(A \mid E_{j}\right) P\left(E_{j}\right)}
\end{align*}
$$

Reverse or Inverse
Probability

Ex. 2.30

G: Good-Quality

$$
\mathrm{P}(\mathrm{G})=0.8 \quad \mathrm{P}(\overline{\mathrm{G}})=0.2
$$

T: Sample pass the test

$$
\mathrm{P}(\mathrm{~T} \mid \mathrm{G})=0.9 \quad \mathrm{P}(\mathrm{~T} \mid \overline{\mathrm{G}})=0.1
$$

Sample passed the test. Knowing the fact,

$$
\begin{aligned}
P\left(G \mid T_{1}\right) & =\frac{P\left(G T_{1}\right)}{P\left(T_{1}\right)}=\frac{P\left(T_{1} \mid G\right) P(G)}{P\left(T_{1} \mid G\right) P(G)+P\left(T_{1} \mid \bar{G}\right) P(\bar{G})} \\
& =\frac{0.9 \times 0.8}{0.9 \times 0.8+0.1 \times 0.2}=0.973
\end{aligned}
$$

$$
\begin{aligned}
P\left(G \mid T_{2}\right)= & \frac{P\left(T_{2} \mid G\right) P(G)}{P\left(T_{2} \mid G\right) P(G)+P\left(T_{2} \mid \bar{G}\right) P(\bar{G})} & P\left(G \mid T_{1} \bar{T}_{2}\right) & =\frac{P\left(T_{1} \bar{T}_{2} \mid G\right) P(G)}{P\left(T_{1} \bar{T}_{2} \mid G\right) P(G)+P\left(T_{1} \bar{T}_{2} \mid \bar{G}\right) P(\bar{G})} \\
& =\frac{0.9 \times 0.973}{0.9 \times 0.973+0.1 \times 0.027}=0.997 & & =\frac{0.9 \times 0.1 \times 0.8}{0.9 \times 0.1 \times 0.8+0.1 \times 0.9 \times 0.2}=0.80
\end{aligned}
$$

$\mathrm{P}(\mathrm{G})$: Prior Probability, $\mathrm{P}(\mathrm{G} \mid \mathrm{T})$: Posterior Probability
Bayes' theorem is useful to for revising or updating the calculated probability as more data and information becomes available. [Bayesian Updating]

