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Ex. 2.2

Designing a left turn

Probability of 5 or more cars waiting  

No. of cars No. of observation Relative frequency

0 4 4/60

1 16 16/60

2 20 20/60

3 14 14/60

4   3 3/60 

5 2 2/60

6                           1 1/60

7 0  0

8 0 0  

=3/60



2.2.1 Important Definitions

Impossible event “Φ” is the event with no sample point

Certain event “S” is the event containing all the sample points 

in a same sample space. The sample space itself.

Complementary event “ ” contains all the sample points in S 

that are not in E for an event E in a sample space S.
E

Sample Space: The set of all possibilities in a probabilistic problem.

Discrete sample space or Continuous sample space

Finite sample space or infinite sample space

Sample Point:  Each of the individual possibilities. 

Event: A subset of the sample space.



Combination of Events 

EE

E

Venn diagram

E1 E2

Union “U” The occurrence of E1 or E2 or both

(“or” is used in an inclusive sense, “and/or” )

Intersection  “I” The joint occurrence of E1 and E2

Mutually exclusive event Disjoint of E1 and E2. 

E1E2 = Φ

Collectively exhaustive event

Union of all the events constitute the sample space
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Two sets are equal if and only if both sets contain exactly 

the same sample points
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2.2.2 Mathematical Operations of Sets

A

S

(2.1a)

(2.1b)

(2.1c)

(2.2a)

(2.2b)



Commutative rule

Associative rule

Distributive rule
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De Morgan’s rule
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Duality relation:

“The complement of unions and intersections is equal to the    

intersections and unions of the respective complements.”
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2.3.1 Addition Rule

Axioms of Probability

1)  Event E in a sample space S

P(E)  0                                                        (2.4)

2)  For the certain event S

P(S) = 1                                                        (2.5)

3) Events E1 and E2 are mutually exclusive 

P(E1 ∪E2)=P(E1)+ P(E2)                             (2.6)

If E1 and E2 are not mutually exclusive

P(E1 ∪E2)=P(E1)+ P(E2)－P(E1 E2)            (2.8)

4) P(E) = 1- P(E)                                                      (2.7)





Ex. 2.13

A: Definitely completed

B: Questionable

C: Definitely incomplete

1) Sample Space ?

2) Probability of exactly one job being completed ?

What is P(E1 ∪E2 ) ?

E1: Job 1 definitely completed

E1 {AA, AB, AC}

E2: Job 2 definitely completed

E2 {AA, BA, CA}



2.3.2 Conditional Probability
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Conditional Probability P(E1|E2):

Probability of an event assuming another event has occurred 

P (E1 |E2) = 1- P (E1 |E2)                                        (2.12)

(2.11)

reconstituted sample space



Ex. 2.18

(a) P(E1 ) = 2.0 P(E2 ),    P(E2 ) = 2.0 P(E3)

P(E1 )+(E2 )+P(E3)=1.0   ⇒ 4.0 P(E3)+ 2.0P(E3) + P(E3)=1.0

P(E3) = 1/7 = 0.1429

(b) P (E2 |E2 ∪E3) = P[E2 ∩(E2 ∪E3 )]/ P(E2 ∪E3 ) 

= P(E2 )/ P(E2 ∪E3 )  = 2/7 /  (2/7+1/7)  

= 2/3 = 0.6667

(c) P(E2 |E2∪E3) = 1- P(E2 | E2∪E3) = 1- 2/3 = 1/3 

Straight ahead = E1, Turn right = E2, Turn left= E3

E1 , E2  and E3 are mutually exclusive and collectively exhausted. 



P(E1E2)= P(E1|E2) P(E2),  P(E1E2)= P(E2|E1) P(E1)    (2.14)

E1 and E2 are statistically independent.

P(E2|E1)= P(E2),    P(E1|E2)= P(E1)                              (2.13)

P(E1E2)= P(E1) P(E2)       (2.15)

Three Events

P(E1E2E3)= P(E1E2|E3) P(E3)

P(E1E2E3)= P(E1|E2E3) P(E2|E3) P(E3)     * (2.14a)

E1, E2 and E3 are statistically independent.

P(E1E2E3)= P(E1) P(E2) P(E3) (2.15a)

2.3.3 Multiplication Rule



Mutually exclusive

Ex. Toss a coin

- heads or tails: Mutually exclusive

- first trial and second trial: Statistically independent

If the occurrence of one event precludes the occurrence of 

another event

> Addition rule

Statistically independent

If the occurrence of one event does not affect the probability of 

another event

> Multiplication rule



Ex. 2.20 Failure of Foundation 

B: Failure of Bearing Capacity P(B) = 0.001

S:              by Excessive Settlement P(S) = 0.008

P(B|S) = 0.1

a) Probability of failure of foundation

P(B∪ S)=P(B)+P(S)-P(BS)=P(B)+P(S)-P(B|S)P(S)

=0.001+0.008 - 0.1×0.008= 0.0082

b) Probability of excessive settlement but no failure in bearing capacity

0.00720.1)0.008-(1           

)S(P))S|B(P1()S(P)S|B(P)BS(P
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2.3.4 Theorem of Total Probability

P(A) =P(AE1)+ P(AE2)+…….+P(AEn)

=P(A|E1)P(E1)+ P(A|E2)P(E2)+….+ P(A|En)P(En) (2.19)

=

E1, E2,…En: mutually exclusive and collectively exhaustive events

Ei∩Ej= Φ, E1∪ E2 ∪,… ∪ En =S

A = AS

= A(E1∪ E2 ∪,… ∪ En )

= AE1∪A E2 ∪,… ∪AEn

Ei
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Ex. 2.27

F: Failure   S: Storm T: Tornado  H: Hit

( ) ( | ) ( ) ( | ) ( )

( | ) ( ) ( | ) ( )

( ) ( | ) ( | ) ( ) 0.01875

( ) ( | ) ( | ) ( ) 0.10625

P F P F STH P STH P F STH P STH

P F ST P ST P F ST P ST

P STH P H ST P T S P S
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2.3.5  Bayes’ Theorem
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)P(E )E|P(A

)P(E )E|P(A

(2.20)

(2.20a)

E1

E2 En

A

Ei

Reverse or Inverse

Probability

E1, E2,…En: mutually exclusive and collectively exhaustive events



Ex. 2.30

G: Good-Quality

T: Sample pass the test

Sample passed the test. Knowing the fact,

P(T | G) 0.9      P(T | G) 0.1 

1 1
1

1 1 1
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0.9 0.8
               0.973

0.9 0.8 0.1 0.2

P GT P T G P G
P G T

P T P T G P G P T G P G
 




 

  

T

G G

P(G) : Prior Probability,  P(G|T): Posterior Probability

Bayes’ theorem is useful to for revising or updating the calculated probability

as more data and information becomes available. [Bayesian Updating]

P(G) 0.8      P(G) 0.2 

2
2

2 2

( | ) ( )
( | )
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0.9 0.973
               0.997

0.9 0.973 0.1 0.027
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