

第3回

光変調符号

講義スケジュール(1)

	日付	内容
第1回	10/6	光通信システム(基礎・長距離基幹系)
第2回	10/13	光通信システム(メトロ・アクセス・LAN・インターコネクション)
第3回	10/20	光変調符号
第4回	10/27	光変復調技術(強度変調·位相変調)
第5回	11/10	光変復調技術(デジタル・コヒーレント関連技術)
第6回	11/17	光ファイバのモード特性(波動方程式)
第7回	11/24	光ファイバのモード特性(偏波)
第8回	12/1	ファイバの伝送特性(分散による伝送限界)

講義スケジュール(2)

	日付	内容
第9回	12/8	ファイバの伝送特性(分散補償技術)
第10回	12/15	光増幅器
第11回	12/22	ビット誤り率(強度変調・直接検波)
第12回	1/5	ビット誤り率(コヒーレント、多値変調、光増幅)
第13回	1/19	波長多重(WDM)伝送(分散マネジメント技術)
第14回	1/26	波長多重(WDM)伝送(変調技術)
第15回	2/2	光スイッチング技術・最新の光通信関連技術

2015年度 光通信システム

光信号の変調方式の種類

変調符号と変調信号 (バイナリ符号)

2015年度 光通信システム

デジタル方式の利点

信号伝送における送信の役割

変調信号の数式表現(1)

2015年度 光通信システム

変調信号の数式表現(2)

位相変調(MPSK): └── Μ値/シンボル $s(t) = A_m(t)cos[2\pi f_c t + \theta_m(t)]$ $A_m(t)$: 定数, $\theta_m(t)$: 可変 たとえば、 $\theta_m(t) = A_m cos[2\pi f_m t]$ ∞ $\theta_m(t) = \sum_{i=-\infty} A_i g(t - iT_m) \longrightarrow$ ここに位相の値(0,πなど) の数値列が入る

の範囲で周期f_mで 正弦波状に変化(アナログ)

iはビット位置を表す変数。 $g(t)はt=0~T_m = 1/f_m$ で振幅1,それ以外では0の 矩形波

変調信号の数式表現(3)

M系列(Maximal-length linear shift register sequences, M-sequences)とは?

- 🥚 擬似ランダム符号(Pseudo random code, PN code)の一種
- 符号長mのM系列の周期:2^m 1

1ビットずつずらして見た7ビットの符号がすべて異なる(all 0以外すべてを 含み、各符号は1回のみ出現) 線形帰還シフトレジスタ(Linear Feedback Shift Register, LFSR)系列を用いる。

 $m_{n+k} = h_{k-1}m_{k-1} \bigoplus h_{k-2}m_{k-2} \bigoplus \bullet \bullet \bullet h_1m_1 \bigoplus h_0m_0$ で生成される系列{ c_n }から求められる(n = 0, 1, 2, ...,は計算のステップ数)。

$$h_i = 0$$
または1, \bigoplus は排他的論理和
 $h(x) = x^k + h_{k-2}x^{k-1} + \bullet \bullet + h_1x + 1$ という多項式で表現する。

7次M系列の生成例(1)

7次M系列には数種類が知られているが、一例として以下の多項式を 用いる場合を示す。

 $\mathbf{h}(x) = x^7 + x^3 + x^2 + x + 1$

【計算手順】

- ・シフトレジスタの初期化
- ・先頭を出力
- ・演算し、演算結果を最後尾入力に移動
- ・格納数値のシフト
- ・以上の繰り返し

2015年度 光通信システム

7次M系列の生成例(2)

NRZ符号(符号長7のM系列)(1)

計算の参考:『Mathcadによる光システムの基礎』小関健,原田一成共著,森北出版

NRZとRZ方式

繰り返し周期を持つパルス波形の帯域

このパルス列をフーリエ級数展開すると、

NRZ変調の信号帯域

10Gbps, 2³¹-1 PRBS (Pseudo Random Bit Sequence), マーク率1/2

RZ変調の信号帯域

最高周波数

 $10Gbps \div 1 = 10GHz$

送信器用光源

半導体レーザの材料選択 光通信システム

周期律表

2015年度

光通信用化合物半導体:13族-15族 12族・14族:p型ドーパント 14族・16族:n型ドーパント

波長依存: 0.85µm帯 GaAs系 0.98µm帯 InGaAs系 1.31/1.55µm帯 InP系

$$E_g = \frac{hc}{\lambda_g}$$

格子定数とバンドギャップ・エネルギー

格子定数 a [Å]

2015年度 光通信システム

半導体レーザの動作原理

発振条件(導波路型)

発振条件(面発光型)

$$R_1 R_2 exp\left[g(2d) - \alpha_{ac}(2d) - \alpha_{cl}(2(L-d)) - j\left[\frac{2\pi n_{eff}}{\lambda_0}(2L) - \varphi_1 - \varphi_2\right]\right] = 1$$

$$\Gamma g = \Gamma \alpha_{ac} + (1 - \Gamma) \alpha_{cl} + \frac{1}{2L} ln \left(\frac{1}{R_1 R_2} \right)$$
ただし、 $\Gamma = \frac{d}{L}$
L~\lambda なので、R>99.5%が必要
L~\lambda なので、\lambda \lambda 0>50nm
(利得帯域内で単一縦モード)

発光層の構造

<mark>バルク構造</mark> 活性層が一種類 厚さ:約0.1μm	量子井戸構造 Quantum Well (QW) 活性層が2種類の周期構造 厚さ:約100Å以下

格子歪の良し悪し

$$\Delta a = \frac{a_1 - a_0}{a_0}$$

しかし。。。

格子欠陥が発生しない程度の薄膜(臨界膜厚)以下であれば、 発光効率向上が得られる場合あり。

金量子井戸構造

∆a > 0: 圧縮歪
 ▲ 無歪量子井戸構造より
 ∆a < 0: 伸張歪
 低閾値電流・高スロープ効率

2015年度 光通信システム

半導体レーザの基本特性

光変調器(電界吸収型変調器)

光変調器の動作原理(1)

(電界吸収型)

EA Modulator (EAM): 電界吸収型変調器

2015年度

光通信システム

EAMによる符号化

マッハツェンダー型光変調器

光変調器の動作原理(2)

(電気光学結晶のマッハツェンダー型)

モード結合導波路(1)

式(3.1)を微分して式(3.2)を代入 $\frac{d^2A}{dz^2} + j2\Delta \frac{dA}{dz} + \kappa^2 A = 0$ (3.3) $\kappa^2 = \kappa_{12} \times \kappa_{21}^*$ $2\Delta = \beta_2 - \beta_1$

結合導波路の結合係数

式(3.1)の κ₁₂ は対称構造において以下の式で表される。

$$\kappa_{12} = \frac{\kappa_0^2}{\beta_0} \frac{1}{\gamma a} \frac{\exp(-\gamma d)}{1 + (\frac{\kappa_0}{\gamma})^2}$$

たさし
$$\kappa_0 = \sqrt{k_0^2 n_1^2 - \beta_0^2}$$

 $\gamma = \sqrt{\beta_0^2 - k_0^2 n_2^2}$
 $k_0 = \frac{2\pi}{\lambda_0}$

n1:コアの屈折率 n2:クラッドの屈折率 a:コア幅の1/2 d: 2つのコアの間隔 λ0: 真空中の波長

モード結合導波路(2)

qを未知数とし、

$$A(z) = [a_1 e^{jqz} + a_2 e^{-jqz}] \exp(-j\Delta z) \quad (3.4)$$
$$B(z) = [b_1 e^{jqz} + b_2 e^{-jqz}] \exp(j\Delta z) \quad (3.5)$$

式(3.4), (3.5)を式(3.1)、(3.2)に代入し、
$$a_1 + a_2 = A(0)$$
 (3.6)
 $b_1 + b_2 = B(0)$ (3.7)

を満足する定数 a_1, a_2, b_1, b_2 を求めると、以下の一般解を得る。 $A(z) = \{ [\cos(qz) + j\frac{\Delta}{q}\sin(qz)]A(0) - j\frac{\kappa}{q}\sin(qz)B(0) \} \exp(-j\Delta z)$ (3.8) $B(z) = \{ -j\frac{\kappa}{q}\sin(qz)A(0) + [\cos(qz) - j\frac{\Delta}{q}\sin(qz)]B(0) \} \exp(j\Delta z)$ (3.9) ただし、 $a = \sqrt{\kappa^2 + \Delta^2}$

モード結合導波路(3)

片方の導波路のみに光が入射された場合、 $A(0)=A_0$, B(0)=0なので

2015年度

光通信システム

モード結合導波路(4)

2本の導波路が同一構造の場合($\beta_1 = \beta_2$ または $\Delta = 0$)、式(3.8), (3.9)は以下のようになる。

$$\begin{cases} A(z) = A(\mathbf{0})\cos(\kappa z) - jB(\mathbf{0})\sin(\kappa z) & (3.12) \\ B(z) = -jA(\mathbf{0})\sin(\kappa z) + B(\mathbf{0})\cos(\kappa z) & (3.13) \end{cases}$$

マッハツェンダー型導波路の解析(1)

上側と下側の導波路が同じ構造(等位相)であるとすると、∆=0

$$\begin{cases} A1 = A0 \cos\left(\frac{\pi}{4}\right) = \frac{A0}{\sqrt{2}} = \frac{A0}{\sqrt{2}} e^{j \cdot 0} & (3.14) \\ B1 = -jA0 \sin\left(\frac{\pi}{4}\right) = -j\frac{A0}{\sqrt{2}} = \frac{A0}{\sqrt{2}} e^{-j\frac{\pi}{2}} & (3.15) \end{cases} \qquad (3.16)$$
$$\begin{cases} A_2 = \frac{A0}{\sqrt{2}} \exp(-j\beta L) & (3.16) \\ B_2 = -j\frac{A0}{\sqrt{2}} \exp(-j\beta L + j\phi) & (3.17) \end{cases}$$

マッハツェンダー型導波路の解析(2)

式(3.16)、(3.17)を式(3.12)、(3.13)のA(0)、B(0)に代入

$$\begin{cases}
A_3 = -jA_0 \sin(\frac{\phi}{2\phi}) \exp(-j\beta L + j\frac{\phi}{2\phi}) & (3.18) \\
B_3 = -jA_0 \cos(\frac{\phi}{2}) \exp(-j\beta L + j\frac{\phi}{2}) & (3.19)
\end{cases}$$

$$\sum \left\{ \begin{array}{l} |A_3|^2 = |A_0|^2 \sin^2(\frac{\phi}{2}) & (3.20) \\ |B_3|^2 = |A_0|^2 \cos^2(\frac{\phi}{2}) & (3.21) \end{array} \right.$$

$$\phi=0$$
のとき、 $|A_3|^2=0, |B_3|^2=1$
 $\phi=\pi$ のとき、 $|A_3|^2=1, |B_3|^2=0$

2015年度

光通信システム

$$\phi = \frac{\pi}{2} + \delta \phi$$
 となるようにバイアスを加えると、
 $|A_3|^2 \cong \frac{1}{2} |A_0|^2 (1 + \delta \phi)$ (3.22) 〇〇 強度変化が得られる

マッハツェンダー型干渉計の強度変調器の動作を再度 光通信システム

2015年度

^{2015年度} _{光通信システム} マッハツェンダー型導波路用デバイス(電気光学結晶)

光受信器

フォトディテクタの動作原理(1)

面入射型PDの構造

pin-PDの基本特性

光受光器の高速化のポイント(1)

2015年度

光通信システム

 α :吸収係数

フォトディテクタの動作原理(2)

APD (Avalanche Photodiode)の構造

光受光器の高速化のポイント(2)

面型から導波路型へ

走行遅延・受信感度のトレードオフ

<mark>導波路型</mark> L L d

受信感度(吸収率) \propto 1-exp(-ad)

dを厚くすると感度は上がり CR時定数も低減するが、 走行遅延劣化が起きる 受信感度(吸収率) $\propto 1 - \exp(-\alpha L)$

Lを長くすると感度があがり 走行遅延と独立に最適化設計化 (L短尺化によるCR低減は必要)