Optical imaging and image processing (X)

4.4 Color image processing

4.4 カラー画像処理

4.4.1 Properties of color images カラー画像の性質

Monochromatic image, B/W image = 1-dimensional

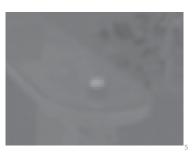
- ⇒ Color image = 3-dimensional
- larger bandwidth in the luminance signal, and smaller bandwidth in the chrominance signal
 - TV signal, Color image compression
- Resemblance in RGB primary component
 - The spectral reflectance of most objects are smooth
- The characteristics of human visual system (HVS)
 - HVS is not sensitive to the blur in the chrominance component
 - but is sensitive to the spatial color variation
 - It is difficult to memorize the color accurately (The memorized color shifts)

Color

G

Original

Luminance


Chrominance

2

4.4.2 Wiener filtering in color images (Color estimation)

カラー画像におけるウイナーフィルタ(色推定)

Image signal $y = S E f + n = S f_e + n$

Color (tristimulus values) $g = C E f = C f_o$

Estimated Color $\hat{\mathbf{g}} = \mathbf{M}\mathbf{y}$

$$e = E\{\| \mathbf{g} - \hat{\mathbf{g}} \|^2\} = E\{\| \mathbf{g} - \mathbf{M}\mathbf{y} \|^2\} \longrightarrow \min$$

$$e = E\{tr[(\mathbf{g} - \mathbf{M}\mathbf{v})(\mathbf{g} - \mathbf{M}\mathbf{v})^t]\}$$

$$\frac{\partial e}{\partial \mathbf{M}} = 0$$

$$\frac{\partial}{\partial M}(g-My) = \frac{\partial}{\partial M}[CEf - M(SEf + n)] = -(SEf + n)$$

- Restoration of R, G, B channels independently
- Restoration of luminance component only
 - Human vision is less sensitive to the high-frequency component of chrominance.
- Image restoration considering inter-channel correlation
 - Chromatic aberration => Different blur in each channel =>
 It is effective to make use of the difference of the transfer
 functions in the R, G, B components.
- Color image captured by color filter array (demosaicing)
 - Color artifact sometimes appears at the edge of monochromatic object
 - Restoration using the inter-channel correlation

Wiener filtering in color images (Color image restoration)

カラー画像におけるウイナーフィルタ(カラー画像復元)

$$\mathbf{f}_{\mathbf{c}}(x,y) = \sum_{j=R,G,B} f_j(x,y)\mathbf{e}_j$$

$$\mathbf{f}_{\mathbf{c}} = \begin{pmatrix} \mathbf{f}_{\mathbf{R}} \\ \mathbf{f}_{\mathbf{G}} \\ \mathbf{f}_{\mathbf{B}} \end{pmatrix}$$

$$\mathbf{g}_{c} = \mathbf{H}_{c}\mathbf{f}_{c} + \mathbf{n}_{c} = \begin{pmatrix} \mathbf{g}_{R} \\ \mathbf{g}_{G} \\ \mathbf{g}_{B} \end{pmatrix} = \begin{pmatrix} \mathbf{H}_{R}\mathbf{f}_{R} + \mathbf{n}_{R} \\ \mathbf{H}_{G}\mathbf{f}_{G} + \mathbf{n}_{G} \\ \mathbf{H}_{B}\mathbf{f}_{B} + \mathbf{n}_{B} \end{pmatrix}$$

$$e = E\{ ||\mathbf{f}_{c} - \hat{\mathbf{f}}_{c}||^{2} \} = E\{ ||\mathbf{f}_{c} - \mathbf{M}\mathbf{g}_{c}||^{2} \} \rightarrow \min$$

In case of the 'Red' channel restoration

$$e = E\{ || \mathbf{f}_{\mathbf{R}} - \mathbf{M}_{\mathbf{R}} \mathbf{g}_{\mathbf{c}} ||^2 \} \rightarrow \min$$

7

Wiener filtering in color images (Color image restoration)

The image of red channel is restored using other channel components

$$\mathbf{M}_{\mathbf{R}} = E\{\mathbf{f}_{\mathbf{R}}\mathbf{g}_{\mathbf{c}}^{t}\}E\{\mathbf{g}_{\mathbf{c}}\mathbf{g}_{\mathbf{c}}^{t}\}^{-1}$$

$$\mathbf{M}_{\mathbf{R}} = E\{\mathbf{f}_{\mathbf{R}}\mathbf{f}_{\mathbf{c}}^{t}\}\mathbf{H}_{\mathbf{c}}^{t}\left[\mathbf{H}_{\mathbf{c}}E\{\mathbf{f}_{\mathbf{c}}\mathbf{f}_{\mathbf{c}}^{t}\}\mathbf{H}_{\mathbf{c}}^{t} + E\{\mathbf{n}_{\mathbf{c}}\mathbf{n}_{\mathbf{c}}^{t}\}\right]^{-1}$$

$$E\{\mathbf{f}_{\mathbf{R}}\mathbf{f}_{\mathbf{c}}^{t}\} = \mathbf{R}_{\mathbf{R}\mathbf{c}} = \left(E\{\mathbf{f}_{\mathbf{R}}\mathbf{f}_{\mathbf{R}}^{t}\} \quad E\{\mathbf{f}_{\mathbf{R}}\mathbf{f}_{\mathbf{G}}^{t}\} \quad E\{\mathbf{f}_{\mathbf{R}}\mathbf{f}_{\mathbf{B}}^{t}\}\right)$$
$$= \left(\mathbf{R}_{\mathbf{R}\mathbf{R}} \quad \mathbf{R}_{\mathbf{R}\mathbf{G}} \quad \mathbf{R}_{\mathbf{R}\mathbf{B}}\right)$$

$$E\{\mathbf{f}_{\mathbf{c}}\mathbf{f}_{\mathbf{c}}^{T}\} = \mathbf{R}_{\mathbf{c}\mathbf{c}} = \begin{pmatrix} \mathbf{R}_{\mathbf{R}\mathbf{R}} & \mathbf{R}_{\mathbf{R}\mathbf{G}} & \mathbf{R}_{\mathbf{R}\mathbf{B}} \\ \mathbf{R}_{\mathbf{G}\mathbf{R}} & \mathbf{R}_{\mathbf{G}\mathbf{G}} & \mathbf{R}_{\mathbf{G}\mathbf{B}} \\ \mathbf{R}_{\mathbf{B}\mathbf{R}} & \mathbf{R}_{\mathbf{B}\mathbf{G}} & \mathbf{R}_{\mathbf{B}\mathbf{B}} \end{pmatrix}$$

$$\mathbf{M}_{\mathbf{R}} = \mathbf{R}_{\mathbf{R}\mathbf{c}} \mathbf{H}_{\mathbf{c}}^{\ t} \left[\mathbf{H}_{\mathbf{c}} \mathbf{R}_{\mathbf{c}\mathbf{c}} \mathbf{H}_{\mathbf{c}}^{\ t} + \mathbf{R}_{\mathbf{n}\mathbf{c}\mathbf{c}} \right]^{-1}$$

Wiener filtering in color images (Color image restoration)

If spatial correlation is ${\bf R}_{\rm p}$ and no correlation between channels, (Intra-channel correlation = ${\bf R}_{\rm p}$ inter-channel correlation = 0

$$\begin{split} \mathbf{R}_{Rc} &= \begin{pmatrix} \mathbf{R}_{RR} & \mathbf{R}_{RG} & \mathbf{R}_{RB} \end{pmatrix} = \begin{pmatrix} \mathbf{R}_{RR} & 0 & 0 \\ \mathbf{R}_{RR} & \mathbf{R}_{RG} & \mathbf{R}_{RB} \\ \mathbf{R}_{GR} & \mathbf{R}_{GG} & \mathbf{R}_{GB} \\ \mathbf{R}_{BR} & \mathbf{R}_{BG} & \mathbf{R}_{BB} \end{pmatrix} = \begin{pmatrix} \mathbf{R}_{RR} & 0 & 0 \\ 0 & \mathbf{R}_{GG} & 0 \\ 0 & 0 & \mathbf{R}_{BB} \end{pmatrix} \\ \mathbf{H}_{c} \mathbf{R}_{cc} \mathbf{H}_{c}^{\ \ \prime} &= \begin{pmatrix} \mathbf{H}_{R} & 0 & 0 \\ 0 & \mathbf{H}_{G} & 0 \\ 0 & 0 & \mathbf{H}_{B} \end{pmatrix} \begin{pmatrix} \mathbf{R}_{RR} & 0 & 0 \\ 0 & \mathbf{R}_{GG} & 0 \\ 0 & 0 & \mathbf{R}_{BB} \end{pmatrix} \begin{pmatrix} \mathbf{H}_{R}^{\ \prime} & 0 & 0 \\ 0 & \mathbf{H}_{G}^{\ \prime} & 0 \\ 0 & 0 & \mathbf{H}_{B}^{\ \prime} \end{pmatrix} \\ \mathbf{M}_{R} &= \begin{pmatrix} \mathbf{R}_{R} & 0 & 0 \\ 0 & \mathbf{H}_{G}^{\ \prime} & 0 \\ 0 & 0 & \mathbf{H}_{B}^{\ \prime} \end{pmatrix} \begin{bmatrix} \begin{pmatrix} \mathbf{H}_{R} \mathbf{R}_{R} \mathbf{H}_{R}^{\ \prime} & 0 & 0 \\ 0 & \mathbf{H}_{G} \mathbf{R}_{G} \mathbf{H}_{G}^{\ \prime} & 0 \\ 0 & 0 & \mathbf{H}_{B} \mathbf{R}_{B} \mathbf{H}_{B}^{\ \prime} \end{pmatrix} + \begin{pmatrix} \mathbf{R}_{nR} & 0 & 0 \\ 0 & \mathbf{R}_{nG} & 0 \\ 0 & 0 & \mathbf{R}_{nB} \end{pmatrix}^{-1} \end{split}$$

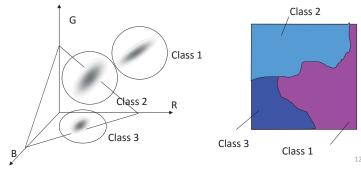
$$\begin{split} \boldsymbol{M}_{R} &= \boldsymbol{R}_{RR} \boldsymbol{H}_{R}^{ t} \Big[\boldsymbol{H}_{R} \boldsymbol{R}_{RR} \boldsymbol{H}_{R}^{ t} + \boldsymbol{R}_{nR} \Big]^{\!-1} \\ &\quad \text{Each channel is restored independently.} \end{split}$$

Wiener filtering in color images (Color image restoration)

In case of no intra-channel correlation, and high inter-channel correlation (almost monochromatic)

$$\begin{split} \mathbf{R}_{Rc} &= \left(\mathbf{R}_{RR} \quad \mathbf{R}_{RG} \quad \mathbf{R}_{RB}\right) = \left(\mathbf{I}_{n} \quad \mathbf{I}_{n} \quad \mathbf{I}_{n}\right) \\ \mathbf{R}_{cc} &= \left(\begin{matrix} \mathbf{R}_{RR} \quad \mathbf{R}_{RG} \quad \mathbf{R}_{RB} \\ \mathbf{R}_{GR} \quad \mathbf{R}_{GG} \quad \mathbf{R}_{GB} \\ \mathbf{R}_{BR} \quad \mathbf{R}_{BG} \quad \mathbf{R}_{BB} \end{matrix}\right) = \left(\begin{matrix} \mathbf{I}_{n} \quad \mathbf{I}_{n} \quad \mathbf{I}_{n} \\ \mathbf{I}_{n} \quad \mathbf{I}_{n} \quad \mathbf{I}_{n} \end{matrix}\right) \\ \mathbf{I}_{n} \quad \mathbf{I}_{n} \quad \mathbf{I}_{n} \\ \mathbf{I}_{n} \quad \mathbf{I}_{n} \quad \mathbf{I}_{n} \end{matrix}$$

$$\mathbf{H}_{c} \mathbf{R}_{cc} \mathbf{H}_{c}^{\ \prime} &= \left(\begin{matrix} \mathbf{H}_{R} \quad 0 \quad 0 \\ 0 \quad \mathbf{H}_{G} \quad 0 \\ 0 \quad 0 \quad \mathbf{H}_{B} \end{matrix}\right) \left(\begin{matrix} \mathbf{R}_{RR} \quad \mathbf{R}_{RG} \quad \mathbf{R}_{RB} \\ \mathbf{R}_{GG} \quad \mathbf{R}_{GB} \end{matrix}\right) \left(\begin{matrix} \mathbf{H}_{R}^{\ \prime} \quad 0 \quad 0 \\ 0 \quad \mathbf{H}_{G}^{\ \prime} \quad 0 \\ 0 \quad 0 \quad \mathbf{H}_{B}^{\ \prime} \end{matrix}\right) \\ &= \left(\begin{matrix} \mathbf{H}_{R} \mathbf{H}_{R}^{\ \prime} \quad \mathbf{H}_{R} \mathbf{H}_{G}^{\ \prime} \quad \mathbf{H}_{R} \mathbf{H}_{B}^{\ \prime} \\ \mathbf{H}_{G} \mathbf{H}_{R}^{\ \prime} \quad \mathbf{H}_{G} \mathbf{H}_{B}^{\ \prime} \\ \mathbf{H}_{B} \mathbf{H}_{B}^{\ \prime} \quad \mathbf{H}_{B} \mathbf{H}_{B}^{\ \prime} \end{matrix}\right) \\ &= \left(\begin{matrix} \mathbf{H}_{R} \mathbf{H}_{R}^{\ \prime} \quad \mathbf{H}_{R} \mathbf{H}_{G}^{\ \prime} \quad \mathbf{H}_{R} \mathbf{H}_{B}^{\ \prime} \\ \mathbf{H}_{B} \mathbf{H}_{R}^{\ \prime} \quad \mathbf{H}_{B} \mathbf{H}_{B}^{\ \prime} \end{matrix}\right) \\ &= \left(\begin{matrix} \mathbf{H}_{R} \mathbf{H}_{R}^{\ \prime} \quad \mathbf{H}_{B} \mathbf{H}_{G}^{\ \prime} \quad \mathbf{H}_{B} \mathbf{H}_{B}^{\ \prime} \\ \mathbf{H}_{B} \mathbf{H}_{R}^{\ \prime} \quad \mathbf{H}_{B} \mathbf{H}_{B}^{\ \prime} \end{matrix}\right) \\ &= \left(\begin{matrix} \mathbf{H}_{R} \mathbf{H}_{R}^{\ \prime} \quad \mathbf{H}_{B} \mathbf{H}_{G}^{\ \prime} \quad \mathbf{H}_{B} \mathbf{H}_{B}^{\ \prime} \\ \mathbf{H}_{B} \mathbf{H}_{R}^{\ \prime} \quad \mathbf{H}_{B} \mathbf{H}_{B}^{\ \prime} \quad \mathbf{H}_{B} \mathbf{H}_{B}^{\ \prime} \\ \mathbf{H}_{B} \mathbf{H}_{B}^{\ \prime} \quad \mathbf{H}_{B} \mathbf{H}_{B}^{\ \prime} \right) \\ &= \begin{matrix} \mathbf{H}_{B} \mathbf{H}_{B}^{\ \prime} \quad \mathbf{H}_{B} \mathbf{H}_{B}^{\ \prime} \quad \mathbf{H}_{B} \mathbf{H}_{B}^{\ \prime} \\ \mathbf{H}_{B} \mathbf{H}_{B}^{\ \prime} \quad \mathbf{H}_{B} \mathbf{H}_{B}^{\ \prime} + \mathbf{R}_{nB} \end{matrix}\right)$$

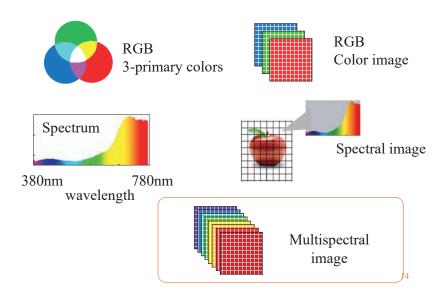

If inter-channel correlation = 1 $M_R = M_G = M_B$

The intra- and inter-channel correlations are measured (or estimated) from the image and G and B components are used in accordance with the correlation characteristics.

4.4.4 Color image analysis カラ

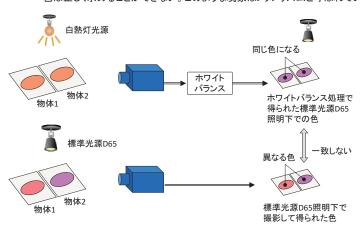
カラー画像解析(例)

- Color image segmentation
- The distribution of pixels values in the color space (color signal space)
- Selection of color space
 - · Considering the characteristics of human vision: UCS, HSV
 - Discounting the illumination nonuniformity: 2-D subspace perpendicular to the illumination color (white)
- Vector quantization


4.5 Limitation of RGB-based color reproduction

Why RGB Imaging is not enough?

- RGB does not represent the color attribute of an object.
- Spectral sensitivity of conventional color imaging device is not equivalent to human vision
- Color reproduction under different illumination environment
- Is not "Quantitative" information for image analysis
- The color gamut of display does not cover all the existent colors
- Observer Metamerism: Color matching for different observers


Different illuminant Under incandescent lamp Under fluorescent lamp

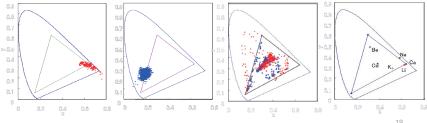
Color image / Spectral image

Different illuminant Metamerism

白熱灯光源の下でスペクトルは異なるがXYZが等しくなる二つの物体が、標準光源D65の下では異なる色になる例。ホワイトバランスによって白は正確に補正されるが、他の色は正しく求めることができない。このような現象はメタメリズムと呼ばれている。

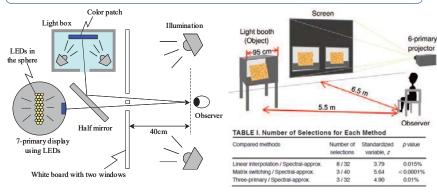
18

Wider color gamut


High chroma colors captured by 6-band camera

Solution Spectrum-based color reproduction

- Multispectral imaging:
 - Capture more than 3 channels
- Illumination spectrum measurement
- Spectrum-based color conversion
- Utilization of wide-gamut displays

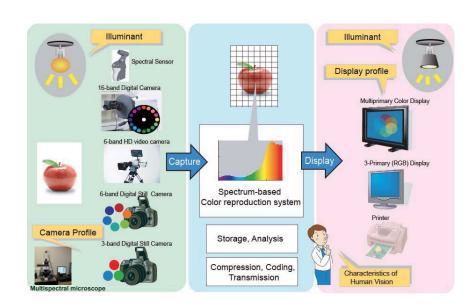

Enables high-fidelity color reproduction as if the subject were placed at the observer site.

> Cf. International Color Consortium, ICCMax CIE Division 8, TC 8-07 Multispectral Imaging

Observer metamerism

Spectral display with spectral approximation

For the applications that need very high-accuracy



Visual experiment using 7-P LED color patch

Visual experiment using 6P display

Y. Murakami, et. al., JEI, Vol.13, No.4, 701-708, (2004) T. Uchiyama et. al., JIST, Vol.49, No.4, 410-417, (2005)

Spectrum-based color reproduction system

