
1

Programming Language 

Design

2015

Week #8: Type Inference &

The Expression Problem

Instructor: Hidehiko Masuhara



Quiz 1/3 (5 min.)

1. Enumerate the advantages of 

dynamically-typed languages over 

statically-typed languages

2. Enumerate the disadvantages of 

dynamically-typed languages over 

statically-typed languages



Quiz 2/3 (5 min.)

Criticize a library for file systems

count() recursively sums up 

the total number of files

(Note: library users can’t 

modify the definitions of 

the library itself)

Node

=====

count()

name()

Dir

=====

count()

File

=====

count()
c
h

ild
re

n



Quiz 3/3 (10 min.) 
Design a library for file systems

 A File has a name and a size

 A Dir has children (of Files and Dirs)

 Library users want to (all recursively)
count total number of files in a directory*

know total size of files in a directory*

 find a file in a directory* and to know its size

etc.
(*files in a directory include those in subdirectories)

Note: users can’t modify the library definition 

Note: traversing directories should be implemented 
inside of the library



Type Inference

a technique to determine types of 

expressions in untyped programs

eg.  given:

def sumOf(f,n) {

if (n==0) return 0;

else return f(n) + sumOf(f,n-1); }

infers:  "sunOf : ((int→int)×int)→int"

successful in functional languages 
(eg. ML, Haskell)

5



Classical type-checking

 Type-checking rules

 Rule: (for each type of expression) permitted combinations 

of types of subexpressions and a type of result

eg: if e1 then e2 else e3   e1 is bool, e2 and e3 have the 

same result type

 Implementation: 1. typing each expression, 2. check against 

the rule

 Typing (giving a type to an expression)

 Types of variables & functions are declared in a program

 Interpret the type-checking rule as "deriving a result type 

from types of subexpressions"

eg. if e1 then e2 else e3  result type = result type of e2

6

"expression"

means expressions 

and statements

Method of type inference

6

types of constants and

built-in functions are 

predetermined

search for a type 

assignments that 

satisfies the rules

 Search problem; hence more 

than one solution

 Choose the most general 

solution
 if there is only one most 

general solution, it is called a 

principal type

 often requires generic types

def s(f,n) { return f(n+1); }



Type inference in OOPL

usu. requires some type information 

from programmers

eg. Scala: infers only local variables

object InferenceTest1 extends Application {    

val x = 1 + 2 * 3

val y = x.toString()

def succ(z: Int) = z + 1

} (from scala-lang.org)

7



Type inference in OOPL

Why Scala infers only local variable types?

because objects are evil !

class Person { String name; }

class File { byte[] name; }

def printName(obj) { print(obj.name); }

what's the type of obj?

then what's the return type of obj.name?

8



Can dynamically-typed 

languages have type inference?

 Dynamically-typed languages

Lisp, Smalltalk, Python, Ruby, etc.

Type-checks at runtime

by attaching type information to values

by selecting appropriate operations based on the 

attached types

eg. def double(x) { return x+x; } 

→ check type of x upon +, and do iadd, fadd, or error

 If we can infer types, we can eliminate 

runtime type checking!

because correct programs do not "get wrong"
9



Can dynamically-typed 

languages have type inference?

We already know full type inference for OOP 

is difficult (if not impossible)

What other difficulties?

 Implicit union types: 

def sq(x) { 

if (x<0) return "NG"; else return sqrt(x); }

Recursive functions:
(lambda (f) 

((lambda (x) (f (x x))) (lambda (x) (f (x x)))))

10



Can dynamically-typed 

languages have type inference?

 Dynamically-typed languages

Lisp, Smalltalk, Python, Ruby, etc.

Type-checks at runtime

by attaching type information to values

by selecting appropriate operations based on the 

attached types

eg. def double(x) { return x+x; } 

→ check type of x upon +, and do iadd, fadd, or error

 If we can, no runtime type checking is 

needed!

because a correct program does not "get wrong"
9

Type-declarations in dynamically-

typed languages:

"declare" in Common Lisp
 Role: a hint to a compiler

 eg.

(defun double (x)

(declare (type fixnum x))

(+ x x))

 Consequence: a compiler can generate code 

with assuming that x always has a fixnum

No guarantee if the assumption is wrong



Type inference in dynamically-typed 

languages: soft typing [CF91]

 a system that infers parts of a program

 Purpose: statically detecting type errors, eliminating 
redundant runtime type checking

 Method:
 mostly the same as in statically typed languages

 use a union type when it cannot determine to one type

eg. def sq(x) { 
if (x<0) return "NG"; else return sqrt(x); }

→ sq : int -> string + float

 leave runtime type checking if for undecidable expressions

eg. sq(123)*2



Gradual typing [ST07]

 Motivation: dynamically-typed languages are better 
for quick prototyping as we don't need to think about 
types

 Statically-typed languages are better in finding type 
errors before execution

 Start development in a DTL, and then migrate into a 
STL
 but it is hard to migrate all at once

 so, migrate gradually → gradual typing

 the programmer can choose typed and untype definition on a 
per-module basis

challenges: passing an untyped function to the typed world, and 
vice versa



Example of gradual typing

[ST07]
class Point {

var x = 0

function move(dx) 

{ this.x = this.x + dx }

}

var a : int = 1

var p = new Point

p.move(a)

15

dx: dyn. typed

result: dyn. typed

a is an integer

p is Point

convert a to

dyn. typed obj.



Example of gradual typing

[ST07]
class Point {

var x = 0

function bool 

equal(o : [x:int]) {   

return this.x==o.x }}

var p = new Point

var q = new Point

p.equal(q)

16

o has at least a 

field x of int

Point is infered as

[x:int, 

equal: [x:int]->bool]

statically safe



Example of gradual typing

[ST07]
class Point {

var x = 0

function bool 

equal(o : [x:int]) {   

return this.x==o.x }}

var p = new Point

p.equal("hello")

17

(statically)

type error



Languages with gradual types

Newspeak [Bracha08]: a la Smalltalk
(called optional typing)

TypedClojure: extension to Clojure

TypeScript: extension to Javascript

Dart: a la Java



Implicit type conversion

 how "int i=...; float f=...; return i + f;" returns 

float?

due to a rule "int + float → float", or

 implicitly converted to "return itof(i)+f;"

(so called upcasting: conversion to more general 

type)

 (Java)Person x=...; println("x=" + x);

 implicitly converted to println("x=" + x.toString());

NB. no subtyping between Person & String

but only between specific types
19



User-defined 

implicit type conversion

(Scala) quoted from [OSV08]

implicit def stringWrapper(s: String) = 

new RandomAccessSeq[Char] { ... }

def printWithSpaces(seq: 

RandomAccessSeq[Char]) = ...

printWithSpaces("xyz")

20

converted by using

stringWrapper



The Expression Problem 
[Wadler98]

A problem of extending data structure 

and its operations in a type-safe way

known for a long time (named by 

[Wadler98])

Extending = without changing existing 

definitions, realizing 

addition of new variant to the data structure

addition of new operations



EP: a simple interpreter

(single inheritance)

Exp represents AST nodes

eval() computes a value

of an expression

new Add(new Num(1), 

new Num(2)).eval()

 3

Exp

====

eval()

Add

====

eval()

Num

====

eval()



EP: addition of a data variant

 to support subtraction

by adding Sub

with eval

without changing 

existing classes!

Exp

====

eval()

Add

====

eval()

Num

====

eval()

Sub

====

eval()



EP: addition of operations

 to print an expression as 

a string

1. NG: adding print() to

Exp ← existing class!

2. Define PExp as a 

subclasses of Exp

→ OK? 

cannot inherit 

definition of eval

Exp

====

eval()

Add

====

eval()

Num

====

eval()

PExp

====

eval()

print()

PAdd

====

eval()

print()

PNum

====

eval()

print()



EP: addition of operations

 to print an expression as 

a string

1. NG: adding print() to

Exp ← existing class!

2. Define PExp as a 

subclasses of Exp

→ OK? 

subexpression of PAdd is Exp

→ no print method

Exp

====

eval()

Add

====

eval()

Num

====

eval()

PExp

====

eval()

print()

PAdd

====

eval()

print()

PNum

====

eval()

print()



Exp

====

accept

Add

=======

accept(v)

Num

=====

accept

v.visitNum(this)

EP: using the Visitor pattern

 one of the GoF

design patterns

 to separate data 

structure from its 

operations

 additional 

operations without 

changing existing 

code!

Visitor

============

visitNum(Num)

visitAdd(Add)

Eval

=========

visitNum

visitAdd(a)

v.visitAdd(this)a.e1.accept(this)

+

a.e2.accept(this)

e1,e2



EP: using the Visitor pattern

 additional 

operations without 

changing existing 

code!

 additional data 

variant?

→need to change 

existing visitors!

Exp

====

accept

Add

=======

accept(v)

Num

=====

accept

Visitor

============

visitNum(Num)

visitAdd(Add)

Eval

=========

visitNum

visitAdd(a)

v.visitNum(this)

v.visitAdd(this)a.e1.accept(this)

+

a.e2.accept(this)

e1,e2

Print

=========

visitNum

visitAdd(a)



A solution with Mixin layers

(review)mixin: a class 

parameterized with its 

superclass

Mixin layers: 

nested mixins [SB98]

28

T

mixin

M C

M C



A solution of EP with Mixin 

layers(and type variables) [ZO04]

M: define as mixin

 E: a type variable 

constrained as 

subtype of Exp

subexpression in Add 

is of type E

 adding data variant: 

straightforward

29

Exp

====

eval()

Add

====

eval()

Num

====

eval()

BASE

E

M
M

Sub

====

eval()

SUB
M



A solution of EP with Mixin 

layers: addition of operation

30

Exp

====

eval()

Add

====

eval()

Num

====

eval()

BASE

E

M
M

Sub

====

eval()

SUB
M

Exp

====

prn()

Add

====

prn()

Num

====

prn()

PRINT M
M

E

EP: addition of operations

 to print an expression as 

a string

1. NG: adding print() to

Exp ← existing class!

2. Define PExp as a 

subclasses of Exp

→ OK? 

subexpression of PAdd is Exp

→ no print method

Exp

====

eval()

Add

====

eval()

Num

====

eval()

PExp

====

eval()

print()

PAdd

====

eval()

print()

PNum

====

eval()

print()



A solution of EP with Mixin 

layers: addition of operation

31

Exp

====

eval()

Add

====

eval()

Num

====

eval()

BASE

E

M
M

Sub

====

eval()

SUB
M

Exp

====

prn()

Add

====

prn()

Num

====

prn()

PRINT M
M

E

create same hierarchy

make E 

a subtype of 

Exp in PRINT

inherit Exp 

in BASE 

as a mixin



A solution of EP with generics 

and constrained type parameters
interface Exp<E extends Exp<E>> { int eval(); }

class Add<E extends Exp<E>> implements Exp<E> {

E e1, e2;

int eval() { ...e1.eval()... } }

class Num<E extends Exp<E>> implements Exp<E> {

int n;

int eval() {return n; } }

interface PExp<E extends PExp<E>> extends Exp<E> {

String print(); }

class PAdd<E extends PExp<E>> extends Add<E> implements PExp<E> {

String print() {...e1.print() ...} }

32

EP: addition of operations

 to print an expression as 

a string

1. NG: adding print() to

Exp ← existing class!

2. Define PExp as a 

subclasses of Exp

→ OK? 

subexpression of PAdd is Exp

→ no print method

Exp

====

eval()

Add

====

eval()

Num

====

eval()

PExp

====

eval()

print()

PAdd

====

eval()

print()

PNum

====

eval()

print()



References

[CF91] Cartwright, Robert, and Mike Fagan. "Soft typing." PLDI'91 (1991): 278-292

[ST07] Siek, Jeremy, and Walid Taha. "Gradual typing for objects." ECOOP 2007–

Object-Oriented Programming. Springer Berlin Heidelberg, 2007. 2-27.

[Bracha08] Bracha, Gilad, et al. "The newspeak programming platform." Cadence 

Design Systems (2008).

[OSV] Martin Odersky, Lex Spoon, and Bill Venners, "Implicit Conversions and 

Parameters" in Chapter 21 of Programming in Scala, First Edition, 2008

[Wadler98] Philip Wadler, “The Expression Problem”, Java Genericity Mailing List, 

1998.

[SB98] Smaragdakis, Yannis, and Don Batory. "Implementing layered designs with 

mixin layers." ECOOP’98—Object-Oriented Programming. 1998. 550-570.

[ZO04] Zenger, Matthias, and Martin Odersky. Independently extensible solutions to 

the expression problem. No. LAMP-REPORT-2004-004. 2004.

33


