
1

Programming Language

Design

2015

Week #5: mixins&trains /

design patterns / frameworks

Instructor: Hidehiko Masuhara

(review) Pros&cons of

multiple inheritance

pro) can reuse additional functions

con) ambiguity: when parents define the

same name methods

con) diamond inheritance:

where there is a common

ancestor found through

different parents

2

Drawable

=======

draw()

Scriptable

========

getString()

draw()

Colored

color

draw()

extends Drawable,

Colored

Traits and mixins

 Observation: many use cases of multiple inheritance

is to reuse additional functions

 Let's provide a language feature for those cases

 while keeping single inheritance (ie, only one parent)

 Two solutions:

 mixins [BC90] ― by linearization

 traits [SDNP03] ― by flattening

(Confused naming: traits in Scala are mixins)

 (Other criteria: whether it can have instance

variables)

3

mixins [BC90]

 A mixin M is a class whose superclass can be

specified later

 C inherits M and class S, M is inserted in betwen C

and S (linearization)

 no ambigoutiy: mixins always come first

 no diamond inheritance: each use of mixin is distinct

 A mixin can inherit from anthor mixin

 We cannot create an object only from a mixin

 Example: traits in Scala

4

Multiple inheritance vs mixins

Drawable

=======

draw()

Scriptable

========

getString()

draw()

Colored

color

draw()

Drawable

=======

draw()

Scriptable

========

getString()

draw()

<<mixin>>

Colored

color

draw()

extends Drawable,

Colored
extends Drawable,

Colored

Traits [SDNP03]

Traits are very similar to mixins

Difference

When C inherits trait T and class S, all the

definitions in T are copied into C

When definitions have the same name,

names of those in T must be renamed

(flattening)

no ambiguity / no diamond inheritance

6

Multiple inheritance vs. traits

Drawable

=======

draw()

Scriptable

========

getString()

draw()

Colored

color

draw()

Drawable

=======

draw()

Scriptable

========

getString()

draw()

<<trait>>

Colored

color

draw()

extends Drawable,

Colored

extends Drawable,

Colored

{ draw -> colorDraw }

colorDraw();

super.draw();

Quiz 1/2 (10min.)

 Design a 3D CAD program

 Casts
 Volume ― each thing in the 3D space

 View ― front and side views

 Use cases
 (When the user drags a volume, it calls move() on the

volume object.) Move() changes the position of the volume

 (When the animation command is executed, the command

calls the move() method on volue objects.)

 When a position of a volume is changed, draw() is called on

the front and side views. (Draw() shows an updated scene)

 Note: only design underlined parts

8

Quiz 2/2 (10min.)

Provide common

functions for game

programs as a component

 common funcs =

outside of yellow boxes

 in any language (OOP)

 also show how to use

the component to

implement a game

9

byte[] imageBuf1 = ..., iageBuf2 = ...;

int previousKey = 0;

while (true) {

int c = read keyboard status;

int key = determine "currently pressed

key" from c and previousKey;

previousKey=key;

switch (key) {

case Left: move to left; break;

case Right: move to right; break;

...;

}

move enemies;

clear(imageBuf1);

draw charactrs on imageBuf1;

transferToDisplay(imageBuf1);

swap imageBuf1 and imageBuf2;

wait for a while;

}

Design Patterns

10

Design Patterns for Reuse:

the Origin
Alexander's design patterns [Alexander77]

Domain: designs of inside of a building to an

entire city

 Scale: various (depends on the domain)

 Target: interactions between a few elements

(eg: stairs and doors)

 Purpose: a language for describing

interactions between elements

NB: not a catalog of components
11

Example of a pattern in the

Alexander's book

 layout of several types of roads in a city district

12

Design patterns for reuse: the Gang of

Four (GoF) Patterns [GoF94]

Domain: class design

Scale: a few classes

Purpose: making a class design is more

"reusable"

 a change in a specification can be realized

without modifying existing classes

 does not mean "reusing" design patterns per

se

13

An example design pattern:

Subject-Observer
 Name: Observer Pattern

 Purpose: define one-to-many relationship between objects, and

when a state of an object is changed, all the dependent objects

are automatically notified and updates their states

14

Observer

=======

notify()

ConcreteObserverB

===============

notify()

ConcreteObserverA

===============

notify()

Subject

=============

update()

addObserver()

deleteObserver()

ConcreteSubjectB

==============

update()

ConcreteSubjectA

==============

update()

* observers

Quiz 1/2 (10min.)

 Design a 3D CAD program

 Casts
 Volume ― each thing in the 3D space

 View ― front and side views

 Use cases
 (When the user drags a volume, it calls move() on the

volume object.) Move() changes the position of the volume

 (When the animation command is executed, the command

calls the move() method on volue objects.)

 When a position of a volume is changed, draw() is called on

the front and side views. (Draw() shows an updated scene)

 Note: only design underlined parts

15

An application of a design

pattern: Subject-Observer
 3D CAD program

 It shows volumes in a space from two views, namely front and

side. When a volume moves, all the views are refreshed

16

Observer

=======

notify()

View

=====

notify()

draw()

Subject

=============

update()

addObserver()

deleteObserver()

Volume

========

update()

move()

* observers

change coords

update();
draw(getDisp());

How design patterns make

classes more reusable?

 if not following the Subject-Observer pattern

17

View

=====

draw()

Volume

frontView

sideView

move()

change coords

frontView.draw(...);

sideView.draw(...);

Addt'l spec: Positions of

volumes should always be

recorded in a file (auto-

save when moved)

An application of a design

pattern: Subject-Observer
 3D CAD program

 It shows volumes in a space from two views, namely front and

side. When a volume moves, all the views are refreshed

18

Observer

=======

notify()

View

=====

notify()

draw()

Subject

=============

update()

addObserver()

deleteObserver()

Volume

========

update()

move()

* observers

change coords

update();
draw(getDisp());

Addt'l spec: Positions of

volumes should always be

recorded in a file (auto-

save when moved)

FStore

=====

notify()

save()

Subject-observer pattern

with traits/mixins
 Subject offers functions to add / delete /

update observers

We want to have a specific class as a

superclass of Volume (eg. geometrical

volume with no

displaying funcs)

We want to show

existing Image

class

19

Observer

=======

notify()

View

=====

notify()

draw()

Subject

=============

update()

addObserver()

deleteObserver()

Volume

========

update()

move()

* obs.

Subject-observer pattern

with traits/mixins

20

Observer

=======

notify()

View

=====

notify()

draw()

Subject

=============

update()

addObserver()

deleteObserver()

InteractiveVolume

==============

update()

move()

* obs. GeomVolume

============

center()

radius()

InteractiveImage

============

update()

move()

Image

=====

ImaeLibrary

mixin

Frameworks

21

Frameworks vs Libraries:

different styles of program reuse

Framework: reuse

control flow as

well (active)

Library (narrow):

passively provide

services

22

user program

framework

user program

library

How frameworks are provided

 Procedural / functional languages: the user

defines callback functions and provides them

to a framework's function (eg. GUI framework

on X11 window system)

OOP languages: a framework provides a

"base" class. The user creates a subclass

and fill the "holes" (methods that perform

specific behaviors) by overriding

The base class can also define default behaviors

(by not overriding)
23

Quiz 2/2 (10min.)

Provide common

functions for game

programs as a component

 common funcs =

outside of yellow boxes

 in any language (OOP)

 also show how to use

the component to

implement a game

24

byte[] imageBuf1 = ..., iageBuf2 = ...;

int previousKey = 0;

while (true) {

int c = read keyboard status;

int key = determine "currently pressed

key" from c and previousKey;

previousKey=key;

switch (key) {

case Left: move to left; break;

case Right: move to right; break;

...;

}

move enemies;

clear(imageBuf1);

draw charactrs on imageBuf1;

transferToDisplay(imageBuf1);

swap imageBuf1 and imageBuf2;

wait for a while;

}

An example of a framework

25

GameFramework

=============

start()

moveHero(dir)

moveOpponents()

drawCharacters()

MyGame

player

monster

moveHero(dir)

moveOppnents()

drawCharacters()

byte[] imageBuf1 = ..., iageBuf2 = ...;

int previousKey = 0;

while (true) {

int c = read keyboard status;

int key = determine "currently pressed

key" by c and previousKey;

previousKey=key;

this.moveHero(key);

this.moveOpponents();

clear(imageBuf1);

drawCharacters(imageBuf1);

transferToDisplay(imageBuf1);

swap imageBuf1 and imageBuf2;

wait for a while;

}

move a hero

to dir

move monsters

randomly

draw hero

and monsters

An example of a framework

26

GameFramework

=============

start()

moveHero(dir)

moveOpponents()

drawCharacters()

MyGame

player

monster

moveHero(dir)

moveOppnents()

drawCharacters()

byte[] imageBuf1 = ..., iageBuf2 = ...;

int previousKey = 0;

while (true) {

int c = read keyboard status;

int key = determine "currently pressed

key" by c and previousKey;

previousKey=key;

this.moveHero(key);

this.moveOpponents();

clear(imageBuf1);

drawCharacters(imageBuf1);

transferToDisplay(imageBuf1);

swap imageBuf1 and imageBuf2;

wait for a while;

}

move a hero

to dir

move monsters

randomly

draw hero

and monsters

class MyGame extends GameFramework {

int heroX, heroY, heroHP;

int[] monstersX, monstersY, monstersType;

void moveHero(int dir) {

moves the hero to dir

}

void moveOpponents() {

moves monsters randomnly

}

void drawCharacters(byte[] buf) {

draw the hero and the monsters

}

}

OOP-based framework, from

a historical perspective

27

Nye and O'Reilly, X Toolkit

Intrinsics Programming Manual,

O'Reilly & Associates, 1990, p.40

register a call-back function

call back function

objects

framework's main

References

[SDNP03] Schärli, Nathanael, Stéphane Ducasse, Oscar

Nierstrasz, and Andrew P. Black. "Traits: Composable units of

behaviour." In ECOOP 2003–Object-Oriented Programming, pp.

248-274, 2003.

[BC90] Bracha, Gilad, and William Cook. "Mixin-based inheritance."

In Proceedings of OOPSLA/ECOOP, pp.303-311, 1990.

[Alexander77] Alexander, Christopher, A Pattern Language: Towns,

Buildings, Construction. Oxford University Press, 1977

[GoF94] Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides, Design Patterns: Elements of Reusable Object-

Oriented Software, Addison-Wesley, 1994

28

