
1

Programming Language

Design

2015

Week #4: Object-oriented

programming (OOP) (2)

Instructor: Hidehiko Masuhara

Class diagram

Component

parent

draw

Picture

image

downLoad(URL)

Label

text

setText

class name

instance vars.

methods

inheritance

a variable has

a value of this type

(anecdote)

Origin of class diagrams

Class diagram is a pictorial language to

express classes and their relationships

Current standard: UML

(unified modeling language)

UML is defined in UML (metamodeling)

unification of 3 major languages: OMT

(Rumbaugh), OOSE (Jacobson), and

Booch method

3

Quiz(1/2): design a school

management system (10min.)
(design at the class diagram level; can assume any language you like)

 Casts: Teacher, Student, TA
 Each has a name and an ID

 A teaching staff (teacher or TA) has a list of teaching classes

 A student (student or TA) has a list of registered classes

 Requirements
 Calculate a total amount of annual salary of all teaching staff

Teacher: no teaching class → 4M Yen: at least one → 6M Yen

TA: the number of teaching classes x 50K Yen

 Calculate the average number of registered classes of
all students (including TAs)

 Calculate the average "working" hours of all members
for teaching staff: # of teaching classes x 3 hours

for students: # of registered classes x 2 hours

for TAs: sum of above

Quiz (2/2): design a matrix library

(10min.)

Classes and methods

Classes: Matrix, IdMatrix

Methods: add(other), mul(other), print(),

at(i,j)

Matrix represents general matrices

 IdMatrix represents identity matrices E

faster mult. by using: A x E = E x A = A

(other operations are the same)

Multiple inheritance

 Defining a class by inheriting definitions from

multiple classes

eg: C++, CLOS, Eiffel

 Example: TA inherits Teacher and Student

class TA extends Teacher, Student { ... }

 for total amount salary, it behaves as a Teacher

 for average registered classes, it behaves as a

student

Problem of multiple inheritance:

ambiguity [Singh94]

 If two superclasess have the method definitions of
the same name,
 which one will be inherited? (Eg: if both Teacher and Student

have hours(), which one will be used for TA?)

 how can we "supercall" both? (Eg: hours() for TA is [hours()
for Teacher] + [hours() for Student])

 Solution in C++:
 Compile error when ambiguous

 Specify a superclass name upon a super call

 Solution in CLOS:
 Chooses the "closest" ancestor in some order

 (no direct solution for supercalls)

Multiple inheritance and

ambiguity: C++ vs CLOS

C++

 specify a

super class

CLOS

 linearization:

Student takes over

Teacher

TA

Teacher

hours

Student

hours

using Student::hours()
registered.size()*2 +

super.hours()

teaching.size()*3 +

super.hours()

CASE#1

for hours(), TAs are

considered as

students

Multiple inheritance and

ambiguity: C++ vs CLOS

C++

 specify a

super class

CLOS

 no direct solution

TA

hours

Teacher

hours

Student

hours

Student::hours() +

Teacher::hours()
registered.size()*2 +

super.hours()

teaching.size()*3 +

super.hours()

CASE#2

for hours(), TAs are

combination of both

Problem of multiple inheritance:

diamond inheritance

When parents have the same ancestor, and
the ancestor defines an instance var., how
many instance vars. should the class have?

 eg: name&id for TA (defined in Person)
1 inst. var. (its unique to a person)

 Should inst. vars. always unique?
or, different IDs as a student and as a teaching

staff

another example (next)

Example of diamond inheritance:

GUI library

 Drawable: anything on screen (eg: buttons)

 ColorDrawable: drawable with colors

 Scriptable: anything that can be represented
as a string

 Rectangle

 Button: string in a rectangle, reacting to
mouse clicks
when Button inherits from Scriptable ad Button,

how color information is managed?

Example of diamond inheritance:

solution in C++

specify "uniqueness" upon inheritance

virtual parent: inst. vars. in common

ancestors are unique

non-virtual parent: ancestors' inst. vars. are

distinct

most other languages supports only

virtual parents

other mechanisms for distinct inst. vars.

Quiz (2/2): design a matrix library

(10min.)

Classes and methods

Classes: Matrix, IdMatrix

Methods: add(other), mul(other), print(),

at(i,j)

Matrix represents general matrices

 IdMatrix represents identity matrices E

faster mult. by using: A x E = E x A = A

(other operations are the same)

Double-dispatching for selecting methods

with two or more arguments

class Matrix {
mul(right) {
return right.mulMatrix(this);
}
mulMatrix(left) {
for(i=...) for(j=...) for(k=...) ...

}
mulIdMatrix(left) { return this; }

}
class IdMatrix {
mul(right) {
return right.mulIdMatrix(this);

}
mulMatrix(right) { return right; }
mulIdMatrix(right) { return this; }

}

 define dispatching
method in C:
class C {
m(arg) {
arg.mC(this);

}
}

 define body method
for a pair of C & D:
class D {
mC(arg) { ...body... }

}

Note: difference from method

overloading

 why not defining like this?

class Matrix {

mul(Matrix right) { ... }

mul(IdMatrix right) { return this; }

}

 when

Matrix m1 = new Matrix(n,n);

Matrix m2 = new IdMatrix(n);

m1.mul(m2) goes there

Generic function

(aka multi-method)

a function that can specify expected

classes of all arguments

can define more than one with the same

name

dispatched on the runtime classes of all

arguments

Best known: CLOS

A matrix library with generic

functions
mul(Matrix left, Matrix right) {

for(i=...) for(j=...) for (k=...)
}
mul(IdMatrix left, Matrix right) {
return right;

}
mul(Matrix left, IdMatrix right) {
return left;

}

Ambiguity in generic functions

mul(Matrix left, Matrix right) { ... }

mul(IdMatrix left, Matrix right) { ... }

mul(Matrix left, IdMatrix right) { ... }

When there are more than one methods

applicable, dispatch to a method that has the

most specific classes in its arguments

 e.g., where these exps go?

mul(new Matrix(n), new IdMatrix(n))

mul(new IdMatrix(n),

new IdMatrix(n))?

Resolving ambiguity in CLOS

 Assume there are methods of:

m(C1,D1,E1), m(C2,D2,E2),

 and m(C0,D0,E0) is performed:

1. collect methods of type (Ci, Di, Ei) where

C0 <: Ci, D0 <: Di, E0 <: Ei

2. dispatch to i when Ci <: Cj, Di <: Dj, Ei <: Ej

for all j

3. dispatch to i when Ci <: Cj, Di :> Dj, Ei = Ej

for all j (left arguments precedes)

Predicate dispatch

 Assume
class: Integer, Float

methods: add(left,right), mul(left,right)
generic function of 4 combinations of methods

Optimize in the following cases
0 + x = x + 0 = x
0 * x = x * 0 = 0
1 * x = x * 1 = 0

 (Note: in the matrix class example, an identity
array is in a different class)

Predicate dispatch [EKC98]

method definition can have conditions
mul(x@Integer, y@Integer) { return x*y }
mul(x@Integer, y@Integer) when x==0 {
return y; }

mul(x@Integer, y@Integer) when y==0 {
return x; }

 conditions on object's states
class File { int fd... }
read(f@File{fd=d}) when d>=0 { ... }
read(f@File{fd=d}) when d<0 { error }
(enables a deep pattern matching)

References

 [Singh94] Ghan Bir Singh. 1994. Single

versus multiple inheritance in object oriented

programming. SIGPLAN OOPS Mess. 5, 1

(January 1994), 34-43.

 [EKC98] Michael Ernst, Craig Kaplan, and

Craig Chambers. "Predicate dispatching: A

unified theory of dispatch." In Proceedings of

ECOOP, 1998. pp.186-211.

