
1

Programming Language

Design

2015

Week #3: Object-oriented

programming (OOP) (1)

Instructor: Hidehiko Masuhara

Quiz (15 min.)

1. Define the meaning of "orientation/-

oriented" in the context of OOP

2. List the language features that

characterize OOP

3. List the common language features in

OOP and abstract datatypes

2

if each of such features is missing,

it can no longer be called OOP

cf. there are PLs that are called

"*-oriented programming" other than OOP

An object is

anything that has

a fixed shape or

form, that you can

touch or see, and

that is not alive.

[Cobuild]

“***-Orientation"

Definition: to consider things by
centering ***

Example: OOP = to program by
centering objects in the problem domain

Note: we say "functional programming",
but not "function-oriented prog."

Note: not only for programming;
e.g., object-oriented design

Example of an OOPL

Use case: Bank account & customer

Objects

 (Bank： customers and accounts)

Customer: name, checking account, saving

account

Account: balance, id

Behavior
calculate total balance of a customer

withdraw money from an account

calculate a balance of an account

4

Example of an OOPL

5

class Customer {

String name;

Account credit, saving;

long balance() {

return credit.getBalance()

+ saving.getBalance(); } }

class Account {

int id;

long balance;

void withdraw(long amount) {

balaance -= amount; }

long getBalance() {

return balance; } }

Class def.

Instance

vars. def.

method

def.

belongs to

instance vars.

objects

name="John"

credit=

saving= id=1234567

balance=1000000

id=887766

balance=3000

has a value

Example of an OOPL

classes and objects
 Class: a definition that bundles

(= written as a program)

method defs.: determine object behaviors

 instance var. defs. : determine object state

Object: (constructed at runtime)

 is a value (stored in a variable)

belongs to a class

has instance variables

6

Example of an OOPL

method calls

7

class Customer {

String name;

Account credit, saving;

long balance() {

return credit.getBalance()

+ saving.getBalance(); } }

class Account {

int id;

long balance;

void withdraw(long amount) {

balaance -= amount; }

long getBalance() {

return balance; } }

name="John"

credit=

saving= id=1234567

balance=1000000

id=887766

balance=3000

john.balance() => 1003000

Method call:

 search body in a receiver's class

 executes as a function

 where instance vars. are visible

Example of an OOPL

method calls
Method call: john.balance()

similar to a function call

 "receiver": 0th argument

Method dispatching:

 identifies a class of the receiver, then

 finds a method def. in the class def.

 Variable environment of method execution:

 instance variables are visible

a pseudo variable to indicate "this"/"self"

8

class FixedDeposit extends Account {

Date maturity;

void withdraw(long amount) {

if (maturity.isExpired())

super.withdraw(amount);

else

error; } }

Example of an OOPL:

inheritance

9

class Account {

int id;

long balance;

void withdraw(long amount) {

balaance -= amount; }

long getBalance() {

return balance; } }

inheritance

id=1234567

balance=1000000
id=887766

balance=3000

creditsaving

credit.getBalance()=>3000 credit.withdraw(1000) => OK

saving.getBalance()=>1000000 saving.withdraw(1000) => error!

class FixedDeposit extends Account {

Date maturity;

void withdraw(long amount) {

if (maturity.isExpired())

super.withdraw(amount);

else

error; } }

Example of an OOPL:

inheritance

10

class Account {

int id;

long balance;

void withdraw(long amount) {

balaance -= amount; }

long getBalance() {

return balance; } }

継承

id=1234567

balance=1000000
id=887766

balance=3000

creditsaving

credit.balance()=>3000 credit.withdraw(1000) => OK

saving.balance()=>1000000 saving.withdraw(1000) => error!

 Inheritance
 creates a class by adding elements

to and/or modifying some elements

in another class

 super/sub-classes

 Method dispatching looks in
 a belonging class,

 if not found, look superclasses

 super-call
 executes method defs in a

superclass

Language features and

"orientation"

OO = think objects first

OOP features: class, method, instance

vars., method call, inheritance,

overriding, ...

How the features make OO possible?

Are they essential to OO?

11

Characteristics of OOPLs:

Encapsulation

When we focus on one object

we distinguish the focused object and

others: to what extent the object "itself"?

→ "object" as one value is a natural unit

called "encapsulation"

we ignore other objects:

other objects can only be accessed

through method calls (cf. ADT)

vs. instance vars in "self" can directly be

accessed 12

Characteristics of OOPLs:

Encapsulation

When we focus on one object

we distinguish the focused object and

others: to what extent the object "itself"?

→ "object" as one value is a natural unit

called "encapsulation"

we ignore other objects:

other objects can only be accessed

through method calls (cf. ADT)

vs. instance vars in "self" can directly be

accessed 13

class Point {

int x, y;

boolean equals(Point other) {

return this.x == other.x

&& this.y == other.y; } }

are we focusing

on one "object"?

Characteristics of OOPLs:

polymorphism
 each object in real world behaves differently

 same action can result in different responses

depending on objects --- called "polymorphism"

→ realized as method dispatching

 eg: saving.withdraw(10000) => error

credit.withdraw(10000) => OK

Note: polymorphism (broader sense): ability to apply

different types of data to the same program

 "Polymorphism" in functional languages: both lists of

integers and lists of strings cat be applied to List.length

14

Characteristics of OOPLs:

inheritance
 treat similar objects as one kind of value

 single definition for objects with the similar properties

 define "difference" for objects with slightly different properties

→ realized by class + inheritance

 akin to "hierarchal categorization", "frame" (for

knoweldge representaiton)

eg. "a penguin is a bird yet cannot fly"

However, it is possible to "think by centering objects" by

means of different bundling mechanisms

15

Classless OOPL: SELF [US87]

Instance-based OOP

(vs. class-based OOP)

 Object = set of instance vars.

 Methods are also values

(called "blocks")

 can be stored in instance vars.

 Method call

= obtain a block in an instance var.

+ execution of the block

(with binding self)

16

id = 12345

balance = 10000

withdraw: =

| :amount |

balance:

(balance - amount)

credit withdraw: 3000.

credit

SELF: Object construction

 to create a set of instance variables

aPoint <- (| x = 100. y = 100. |)

 to copy an existing object

bPoint <- aPoint copy.

17

x=100

y=100

x=100

y=100

aPoint=

bPoint=

SELF: bundling similar objects

together

by constructing a reference object, and

copying from that object each time

reference obj. = a prototype

so called "prototype-based OOP"

 cPoint <- (| x = 100. y = 200.

add: other = (

(copy x: (x + other x))

y: (y + other y)).

|)

18 cPoint add: cPoint.

x=100

y=100

add: =cPoint=
addition

x=200

y=200

add: =

SELF: bundling similar objects

together

Delegation

searches a method in

other objects when

no definitions found in an object

"self" refers to the receiver

 pointTrait <- (| x. y. add: other = ... |)

 dPoint <- (| x<-100. y<-100.

parent*=pointTrait |)

 dPoint add: dPoint.
19

x=100

y=100

parent =dPoint=

x: = ...

y: = ...

add: =

(copy x: (x + other x))

y: (y + other y)

SELF: hierarchical

decomposition
 can be embodied by

a hierarchy of traits

20

x=100

y=100

parent =

parent =

x: = ...

y: = ...

r =

theta =

add: =

scale: =

sub: =

parent =

r: = ...

theta: = ...

x =

y =

add: =

scale: =
copy r: (r*f)

add: (other scale: -1)

r=10

theta=3.14..

parent =

Why instance-based?

 any object can be a unit of grouping

no need to create a class for one exception

 less language constructs

only object, instance vars, and delegation

 invention of faster implementation tenchiques

Polymorphic inline cache (PIC), dynamic

compilation, etc.

other than SELF: Simula, Javascript

21

References

 [所93] 所真理雄, "オブジェクト指向計算",

in オブジェクト指向コンピューティング,

pp.1-56, 岩波書店, 1993.

 [US87] David Ungar and Randall Smith,

“Self: The power of simplicity”, in

Proceedings of OOPSLA, 1987.

