Programming Language
Design

2015

Week #9: Product lines, feature-
orientation, context-orientation

Instructor: Hidehiko Masuhara

Q(1/2): Design classes for
representing sets (10 min.)

B Common operations: insertion and deletion of an eIFment

B Variations
» ListSet: uses a linked-list
€ O(1) insertion, O(n) deletion
» TreeSet: uses a binary tree

€ O(logn) insertion and deletion
€ additional op.: checking element containment

A\

threads

CountableTreeSet: TreeSet with ... # of elements
CountableConcurrentListSet: ibid.
CountableConcurrentTreeSet: ibid.

YV V V V VY

"

Goal: avoid
code
duplication

)

J

ConcurrentListSet: ListSet that can be concurrently accessed from multi-

ConcurrentTreeSet: TreeSet that can be...multi-threads)TreeSet
CountableListSet: ListSet with operation to determine # of elements

Q(2/2): Discuss how to optimize
ListSet (5 min.)

B when (1) many elements are sequentially inserted,
and then (2) elements are inserted and deleted
concurrently

B by not using locks during (1)

B (if needed) by //setup
m0d|fy|ng definition ListSet students = new ListSet();

. ListSet teachers = new ListSet|() ;
Of L.IS.t.SGt and readPeople (studentDB, students) ;
definition of the readPeople (teacherDB, teachers) ;
//main
COde for (1) and (2) new ThreadPool (10) {
W discuss or show a TERel EEAG)
...students.insert(...)...

class deSign ...teachers.insert(...)... }}

Product lines

B Definitions

» a range of similar products or services that are
sold by the same company, with different features
and different prices (Cambridge Dictionary Online)

» a group of related products marketed by the same
company (Collins)

B Examples?

B How are they important in production?
» design reuse

Feature-oriented product line
engineering [KLproz]

B Domain: product lines development
B Goal: making outcomes more reusable

B Methods of: analysis, modeling and
design

B Challenge: variability management

B Orientation: features Iin products
»analyze dependency between features
»not necessarily object-oriented

Feature analysis example:

Home Integration System [KLDO02]

Capability HIS
layer -

Services Administration ~ /
Securlty Intrusmn Fire Floud iMI b

/\ /\ \Slandard Advanced
I]etectlon Action Detection Actlun Detecllon Action
Door— [0 — ™0 «--"'T‘ O
operation Message o Gas . Pumping
Alarm _ o~ Water Water
Data Voice main
Motion Smoke Moisture
L

Operating Communication
environment
layer /
Domain Monitoring and detecting
technology AN
layer e by

Discrete Cm{tinuous

value value
Implementation Connection
technique
layer \\

Composition rules
Water reqguires Sprinkler. Flood requires Moisture sensor.
Pumping requires Sump pump. Message requires Communication.

i
-‘—\

P uop

Detection
devices

. '\\ :

Telephone Internet Motion Smoke Moisture
Sensor sensor sensor

O Optional feature
. Alternative feature

Direct ——

Periodic

Quali
Monitor/control amihugs

—% _—
_ ‘-.\Usability/ \
Scheduled \ Safety
/\ \ Scalability
One-time| Event- Reliability
hased
™
Action
devices
Sprinkler e
Sump
pump
Responding
strategy
Sequenlfilal Priority

Redundancy control

i
£
r,

Sta\ndby

— Composed-of relationship
Generalization relationship
— Implemented-hy relationship

Active

Capability
layer

Security Intrgsi'ﬁh

Y
| fI/ \\
.S

st Y, *,
Detection Art

Dor~
or’

Domain
technology
layer

Implementation
technigue
layer

Composition rules

Water requires Sprinkler. Flood requires Mms!
Pumping requires Sump pump. Message reqﬂq

Feature analysis example:
Home Integration System [KLDO02]

: Quali
Monitor/control a“,ihu}’és

Usahilit;}rf.f
/ Safety
Scalabhility

ki'itv

Administration .
™,
pN
~ L \\ \\
r ™~ NN\ Direct
LY \\

Services

Scheduled

what features are there?
which features can be combined?
which features cannot be combined?
which features depend which features?
which features are related?

~

Discrete Continuuu. Sequential Priority

value value
"'Edunda ncy control
itive Standby

wf relationship
tion relationship
&d-hy relationship

U[]l'lﬂl'lﬂ| feature
i;-_-k_,_ﬂlternatwe feature

How do we
Implement software
product lines?

Realizing product lines in
software: #ifdef

B . static int __rep queue_filedone(dbenv, rep, rfp)
Linux 3.2 has tic int TPt

12000 "features" BEEST

. rep fileinfo args =rfp; {
[Relnhard14] #ifndef HAVE QUEUE
COMPQUIET (rep, NULL);
B Problems COMPQUIET (rfp, NULL);
return (_ db no queue am(dbenv));
» hard to read #else |
db_pgno_t first, last;
» can only be u_int32_t flags;
- int empty, ret, t ret;
verified after #ifdef DIAGNOSTIC
preprocessing DB_MSGBUF mb;
]] #endif
compinations // over 100 further lines of C code
> 2" binat = :

#endif
b

uses of #ifdef in Oracle Berkeley DB ([KA13])

Feature-oriented programming

B Goal

» Cohabitation of feature-orientation and hierarchical
decomposition

» Select and combine features

B Approach: Layer (=feature)based modularization
hierarchical decomposition
>

> selection

features

FOP with mixin layers [YB98]

B (mixin: a class whose super Is parameterized)

B mixin layer: nested mixins
» outer mixin = featuers

» Inner class/mixin = hierachical decomposition

& a subclass of the same name class
In outer mixin's parent

1
1
W feature composition Lot Lo
= outer mixin composition Zﬁ

FOP Collection library with
mIXIn layers [YB9s]

Container Node
ALLOC‘ | node_alloc() | | w’l ElemType |
iInsert() t
BINTREE erase) ——l, e
find() |'—'I right

iInsert()
. more recent i
TIMESTAMP| |find_newer() = Of prLTime

update update] creation

size()

SIZEOF insert() count

erase()

FOP Collection library with

mixin layers [yBog] | _inherit

Container

Container Node in super

ALLOC‘ [parameterized super layer 3[Eie layer

BINTREE

TIMESTAMP

SIZEOF

template <class Super> class SIZEOF : Super {
class Container : public Super::Container {
int count;
void insert (EleType el) {
Super: :Container: :insert (el); count++;
void erase (Node* node) {

Super: :Container: :erase(el); count--; }
int size () { return count; } }; };
L updatej creation | |

size()

iInsert() Coum

erase()

}

Q(2/2): Discuss how to optimize
ListSet (10 min.)

B when (1) many elements are sequentially inserted,
and then (2) elements are inserted and deleted
concurrently

B by not using locks during (1)

B (if needed) by //setup
m0d|fy|ng definition ListSet students = new ListSet();

. ListSet teachers = new ListSet|() ;
Of L.IS.t.SGt and readPeople (studentDB, students) ;
definition of the readPeople (teacherDB, teachers) ;
//main
COde for (1) and (2) new ThreadPool (10) {
W discuss or show a TERel EEAG)
...students.insert(...)...

class deSign ...teachers.insert(...)... }}

Context-oriented programming
[HCNOS8]

W Background

» Things behave differently based on their
contexts ---context-dependent behaviors---

»1o model in OOPLs

€ implement context-dependent behaviors in one
class/method — many conditional braches

& define a class for each context
— one object no longer represents one "thing"

Modeling context-dependent behaviors In
OOPL (1 class) Lt

if (isConcurrent) lock.get(); |sCoInc1lJ(rrent
head = new Cons (elm, head) ; oc
if (isConcurrent) lock.release () ; -
insert(elm)
ListSet students = new ListSet() ; setConcurrent(c)
ListSet teachers = new ListSet|() ; initialize
students.setConcurrent (false) ; .
readPeople (studentDB, students) ; Sequent|a”y
teachers.setConcurrent (false) ; . .
readPeople (teacherDB, teachers) switch behaviors
students.setConcurrent (true) ; when context
teachers.setConcurrent (true) ; changes

new ThreadPool (10) {
void run() ({
...students.insert(...) ... update

...teachers.insert(...)... }} parallely

Modeling context-dependent

hah Ay
delegate to impl

impl.insert (elm) ;

ors In OOPL (multi. classes)

>:change behaviors
when context changes

ListSet

insert(elm)
switch()

l _ IListSet
S = Impl ===

1 insert(elm)
switch()

T lock.get() ;
I .

..insert elm...

SegListSet

insert(elm)
switch()

|C0ncListSe lock.release() ;

insert(elm) | s=new SeqListSet()
switch() s .head=this.head;

impl = impl.switch() ;

return s;

changing behavior by
replacing with a new obj.

Context-oriented programming
[HCNOS8]

B Difference In situations = context-dependency

B Define context-dependent behaviors in layers
» similar to mixin layers

» overriding same name method in same name
class

» reusing overridden code by proceed (cf. super)
B Methods in a layer override
only when the layer is active
» controlled through activation commands
» multiple active layers — multiple-overriding

Example of context-oriented
programming

ListSet | head=new Cons (elm, head) ;
e e e e e k
insert(elm) | lock.get(); k
proceed (elm) ;

= _ lock.release() ; s.insert (p) ;
o ListSet I I i)
> 1 —— k‘
o | FEe
8 insert(elm) | ‘ ListSet student new ListSet () ;

ListSet teacksfs = new ListSet();
readPeopl (stﬁgentDB, students) ;
. . readPeople(teaéberDB, teachers) ;
Layer activation: with (Concurrent) {

behaviors of objs. are ~ new ThreadPool (10) {
n :
changed all at once veRe ml)

...students.ihsert(...)...
...teachers.insert(...)... }}

References

[KA13] Kastner, Christian, and Sven Apel. "Feature-Oriented Software
Development.” Generative and Transformational Techniques in
Software Engineering IV. Springer Berlin Heidelberg, 2013. 346-382.

[Reinhard14] Tartler, Reinhard, et al. "Static analysis of variability in system
software: The 90,000# ifdefs issue." Proc. USENIX Conf. 2014.

[KLPO2] Kang, Kyo C., Jaejoon Lee, and Patrick Donohoe. "Feature-
oriented product line engineering." IEEE software 19.4 (2002): 58-65.

[YB98] Smaragdakis, Yannis, and Don Batory. "Implementing layered
designs with mixin layers." ECOOP’98—Object-Oriented Programming.
Springer Berlin Heidelberg, 1998. 550-570.

[HCNO8] Hirschfeld, Robert, Pascal Costanza, and Oscar Nierstrasz.
"Context-oriented programming." Journal of Object Technology 7.3
(2008).

