
1

Programming Language

Design

2015

Week #9: Product lines, feature-

orientation, context-orientation

Instructor: Hidehiko Masuhara

Q(1/2): Design classes for

representing sets (10 min.)

 Common operations: insertion and deletion of an element

 Variations

 ListSet: uses a linked-list

 O(1) insertion, O(n) deletion

 TreeSet: uses a binary tree

 O(logn) insertion and deletion

 additional op.: checking element containment

 ConcurrentListSet: ListSet that can be concurrently accessed from multi-

threads

 ConcurrentTreeSet: TreeSet that can be...multi-threads)TreeSet

 CountableListSet: ListSet with operation to determine # of elements

 CountableTreeSet: TreeSet with ... # of elements

 CountableConcurrentListSet: ibid.

 CountableConcurrentTreeSet: ibid.

2

Goal: avoid

code

duplication

Q(2/2): Discuss how to optimize

ListSet (5 min.)

 when (1) many elements are sequentially inserted,

and then (2) elements are inserted and deleted

concurrently

 by not using locks during (1)

 (if needed) by

modifying definition

of ListSet and

definition of the

code for (1) and (2)

 discuss or show a

class design

//setup

ListSet students = new ListSet();

ListSet teachers = new ListSet();

readPeople(studentDB, students);

readPeople(teacherDB, teachers);

//main

new ThreadPool(10){

void run() {

...students.insert(...)...

...teachers.insert(...)... }}

}

Product lines

 Definitions

a range of similar products or services that are

sold by the same company, with different features

and different prices (Cambridge Dictionary Online)

a group of related products marketed by the same

company (Collins)

 Examples?

 How are they important in production?

design reuse

Feature-oriented product line

engineering [KLP02]

Domain: product lines development

Goal: making outcomes more reusable

Methods of: analysis, modeling and

design

Challenge: variability management

Orientation: features in products

analyze dependency between features

not necessarily object-oriented

Feature analysis example:

Home Integration System [KLD02]

Feature analysis example:

Home Integration System [KLD02]

what features are there?

which features can be combined?

which features cannot be combined?

which features depend which features?

which features are related?

How do we

implement software

product lines?

8

Realizing product lines in

software: #ifdef

 Linux 3.2 has
12000 "features"
[Reinhard14]

 Problems
hard to read

can only be
verified after
preprocessing

2n combinations

uses of #ifdef in Oracle Berkeley DB ([KA13])

Feature-oriented programming

 Goal

 Cohabitation of feature-orientation and hierarchical

decomposition

 Select and combine features

 Approach: Layer (=feature)based modularization

fe
a

tu
re

s

hierarchical decomposition

selection

FOP with mixin layers [YB98]

 (mixin: a class whose super is parameterized)

mixin layer: nested mixins

outer mixin = featuers

 inner class/mixin = hierachical decomposition

a subclass of the same name class

in outer mixin's parent

 feature composition

= outer mixin composition

11

File Dir

File Dir

Time

FOP Collection library with

mixin layers [YB98]

node_alloc() ElemType

Container Node

parent

left

right

insert()

erase()

find()

header

insert()

find_newer()
update, creation

more_recent() Time

update

size()

insert()

erase()

ALLOC

BINTREE

TIMESTAMP

SIZEOF
count

Int

elm

Time

FOP Collection library with

mixin layers [YB98]

node_alloc() ElemType

Container Node

parent

left

right

insert()

erase()

find()

header

insert()

find_newer()
update, creation

more_recent() Time

update

size()

insert()

erase()

ALLOC

BINTREE

TIMESTAMP

SIZEOF
count

Int

elm

template <class Super> class SIZEOF : Super {

class Container : public Super::Container {

int count;

void insert (EleType el) {

Super::Container::insert(el); count++; }

void erase (Node* node) {

Super::Container::erase(el); count--; }

int size () { return count; } }; };

parameterized super layer

inherit
Container
in super

layer

Q(2/2): Discuss how to optimize

ListSet (10 min.)

 when (1) many elements are sequentially inserted,

and then (2) elements are inserted and deleted

concurrently

 by not using locks during (1)

 (if needed) by

modifying definition

of ListSet and

definition of the

code for (1) and (2)

 discuss or show a

class design

//setup

ListSet students = new ListSet();

ListSet teachers = new ListSet();

readPeople(studentDB, students);

readPeople(teacherDB, teachers);

//main

new ThreadPool(10){

void run() {

...students.insert(...)...

...teachers.insert(...)... }}

}

Context-oriented programming

[HCN08]

Background

Things behave differently based on their

contexts ---context-dependent behaviors---

to model in OOPLs

implement context-dependent behaviors in one

class/method → many conditional braches

define a class for each context

→ one object no longer represents one "thing"

Modeling context-dependent behaviors in

OOPL (1 class) ListSet

isConcurrent

lock

insert(elm)

setConcurrent(c)

if (isConcurrent) lock.get();

head = new Cons(elm,head);

if (isConcurrent) lock.release();

ListSet students = new ListSet();

ListSet teachers = new ListSet();

students.setConcurrent(false);

readPeople(studentDB, students);

teachers.setConcurrent(false);

readPeople(teacherDB, teachers);

students.setConcurrent(true);

teachers.setConcurrent(true);

new ThreadPool(10){

void run() {

...students.insert(...)...

...teachers.insert(...)... }}

switch behaviors
when context

changes

initialize

sequentially

update

parallely

Modeling context-dependent

behaviors in OOPL (multi. classes)

ListSet

=========

insert(elm)

switch()

IListSet

=========

insert(elm)

switch()

SeqListSet

=========

insert(elm)

switch()

ConcListSet

=========

insert(elm)

switch()

impl

lock.get();

...insert elm...

lock.release();

s=new SeqListSet();

s.head=this.head;

return s;

impl = impl.switch();

impl.insert(elm); ※change behaviors
when context changes

delegate to impl

changing behavior by
replacing with a new obj.

Context-oriented programming

[HCN08]

 Difference in situations = context-dependency

 Define context-dependent behaviors in layers
similar to mixin layers

overriding same name method in same name
class

 reusing overridden code by proceed (cf. super)

Methods in a layer override
only when the layer is active
controlled through activation commands

multiple active layers → multiple-overriding

Example of context-oriented

programming
ListSet

=============

insert(elm)

ListSet

=============

insert(elm)

C
o
n
c
u
rr

e
n
t

lock.get();

proceed(elm);

lock.release();

head=new Cons(elm,head);

ListSet students = new ListSet();

ListSet teachers = new ListSet();

readPeople(studentDB, students);

readPeople(teacherDB, teachers);

with (Concurrent) {

new ThreadPool(10){

void run() {

...students.insert(...)...

...teachers.insert(...)... }}

}

s.insert(p);

Layer activation:
behaviors of objs. are
changed all at once

References

[KA13] Kästner, Christian, and Sven Apel. "Feature-Oriented Software
Development." Generative and Transformational Techniques in
Software Engineering IV. Springer Berlin Heidelberg, 2013. 346-382.

[Reinhard14] Tartler, Reinhard, et al. "Static analysis of variability in system
software: The 90,000# ifdefs issue." Proc. USENIX Conf. 2014.

[KLP02] Kang, Kyo C., Jaejoon Lee, and Patrick Donohoe. "Feature-
oriented product line engineering." IEEE software 19.4 (2002): 58-65.

[YB98] Smaragdakis, Yannis, and Don Batory. "Implementing layered
designs with mixin layers." ECOOP’98—Object-Oriented Programming.
Springer Berlin Heidelberg, 1998. 550-570.

[HCN08] Hirschfeld, Robert, Pascal Costanza, and Oscar Nierstrasz.
"Context-oriented programming." Journal of Object Technology 7.3
(2008).

