
1

Programming Language

Design

2015

Week #9: Product lines, feature-

orientation, context-orientation

Instructor: Hidehiko Masuhara

Q(1/2): Design classes for

representing sets (10 min.)

 Common operations: insertion and deletion of an element

 Variations

 ListSet: uses a linked-list

 O(1) insertion, O(n) deletion

 TreeSet: uses a binary tree

 O(logn) insertion and deletion

 additional op.: checking element containment

 ConcurrentListSet: ListSet that can be concurrently accessed from multi-

threads

 ConcurrentTreeSet: TreeSet that can be...multi-threads)TreeSet

 CountableListSet: ListSet with operation to determine # of elements

 CountableTreeSet: TreeSet with ... # of elements

 CountableConcurrentListSet: ibid.

 CountableConcurrentTreeSet: ibid.

2

Goal: avoid

code

duplication

Q(2/2): Discuss how to optimize

ListSet (5 min.)

 when (1) many elements are sequentially inserted,

and then (2) elements are inserted and deleted

concurrently

 by not using locks during (1)

 (if needed) by

modifying definition

of ListSet and

definition of the

code for (1) and (2)

 discuss or show a

class design

//setup

ListSet students = new ListSet();

ListSet teachers = new ListSet();

readPeople(studentDB, students);

readPeople(teacherDB, teachers);

//main

new ThreadPool(10){

void run() {

...students.insert(...)...

...teachers.insert(...)... }}

}

Product lines

 Definitions

a range of similar products or services that are

sold by the same company, with different features

and different prices (Cambridge Dictionary Online)

a group of related products marketed by the same

company (Collins)

 Examples?

 How are they important in production?

design reuse

Feature-oriented product line

engineering [KLP02]

Domain: product lines development

Goal: making outcomes more reusable

Methods of: analysis, modeling and

design

Challenge: variability management

Orientation: features in products

analyze dependency between features

not necessarily object-oriented

Feature analysis example:

Home Integration System [KLD02]

Feature analysis example:

Home Integration System [KLD02]

what features are there?

which features can be combined?

which features cannot be combined?

which features depend which features?

which features are related?

How do we

implement software

product lines?

8

Realizing product lines in

software: #ifdef

 Linux 3.2 has
12000 "features"
[Reinhard14]

 Problems
hard to read

can only be
verified after
preprocessing

2n combinations

uses of #ifdef in Oracle Berkeley DB ([KA13])

Feature-oriented programming

 Goal

 Cohabitation of feature-orientation and hierarchical

decomposition

 Select and combine features

 Approach: Layer (=feature)based modularization

fe
a

tu
re

s

hierarchical decomposition

selection

FOP with mixin layers [YB98]

 (mixin: a class whose super is parameterized)

mixin layer: nested mixins

outer mixin = featuers

 inner class/mixin = hierachical decomposition

a subclass of the same name class

in outer mixin's parent

 feature composition

= outer mixin composition

11

File Dir

File Dir

Time

FOP Collection library with

mixin layers [YB98]

node_alloc() ElemType

Container Node

parent

left

right

insert()

erase()

find()

header

insert()

find_newer()
update, creation

more_recent() Time

update

size()

insert()

erase()

ALLOC

BINTREE

TIMESTAMP

SIZEOF
count

Int

elm

Time

FOP Collection library with

mixin layers [YB98]

node_alloc() ElemType

Container Node

parent

left

right

insert()

erase()

find()

header

insert()

find_newer()
update, creation

more_recent() Time

update

size()

insert()

erase()

ALLOC

BINTREE

TIMESTAMP

SIZEOF
count

Int

elm

template <class Super> class SIZEOF : Super {

class Container : public Super::Container {

int count;

void insert (EleType el) {

Super::Container::insert(el); count++; }

void erase (Node* node) {

Super::Container::erase(el); count--; }

int size () { return count; } }; };

parameterized super layer

inherit
Container
in super

layer

Q(2/2): Discuss how to optimize

ListSet (10 min.)

 when (1) many elements are sequentially inserted,

and then (2) elements are inserted and deleted

concurrently

 by not using locks during (1)

 (if needed) by

modifying definition

of ListSet and

definition of the

code for (1) and (2)

 discuss or show a

class design

//setup

ListSet students = new ListSet();

ListSet teachers = new ListSet();

readPeople(studentDB, students);

readPeople(teacherDB, teachers);

//main

new ThreadPool(10){

void run() {

...students.insert(...)...

...teachers.insert(...)... }}

}

Context-oriented programming

[HCN08]

Background

Things behave differently based on their

contexts ---context-dependent behaviors---

to model in OOPLs

implement context-dependent behaviors in one

class/method → many conditional braches

define a class for each context

→ one object no longer represents one "thing"

Modeling context-dependent behaviors in

OOPL (1 class) ListSet

isConcurrent

lock

insert(elm)

setConcurrent(c)

if (isConcurrent) lock.get();

head = new Cons(elm,head);

if (isConcurrent) lock.release();

ListSet students = new ListSet();

ListSet teachers = new ListSet();

students.setConcurrent(false);

readPeople(studentDB, students);

teachers.setConcurrent(false);

readPeople(teacherDB, teachers);

students.setConcurrent(true);

teachers.setConcurrent(true);

new ThreadPool(10){

void run() {

...students.insert(...)...

...teachers.insert(...)... }}

switch behaviors
when context

changes

initialize

sequentially

update

parallely

Modeling context-dependent

behaviors in OOPL (multi. classes)

ListSet

=========

insert(elm)

switch()

IListSet

=========

insert(elm)

switch()

SeqListSet

=========

insert(elm)

switch()

ConcListSet

=========

insert(elm)

switch()

impl

lock.get();

...insert elm...

lock.release();

s=new SeqListSet();

s.head=this.head;

return s;

impl = impl.switch();

impl.insert(elm); ※change behaviors
when context changes

delegate to impl

changing behavior by
replacing with a new obj.

Context-oriented programming

[HCN08]

 Difference in situations = context-dependency

 Define context-dependent behaviors in layers
similar to mixin layers

overriding same name method in same name
class

 reusing overridden code by proceed (cf. super)

Methods in a layer override
only when the layer is active
controlled through activation commands

multiple active layers → multiple-overriding

Example of context-oriented

programming
ListSet

=============

insert(elm)

ListSet

=============

insert(elm)

C
o
n
c
u
rr

e
n
t

lock.get();

proceed(elm);

lock.release();

head=new Cons(elm,head);

ListSet students = new ListSet();

ListSet teachers = new ListSet();

readPeople(studentDB, students);

readPeople(teacherDB, teachers);

with (Concurrent) {

new ThreadPool(10){

void run() {

...students.insert(...)...

...teachers.insert(...)... }}

}

s.insert(p);

Layer activation:
behaviors of objs. are
changed all at once

References

[KA13] Kästner, Christian, and Sven Apel. "Feature-Oriented Software
Development." Generative and Transformational Techniques in
Software Engineering IV. Springer Berlin Heidelberg, 2013. 346-382.

[Reinhard14] Tartler, Reinhard, et al. "Static analysis of variability in system
software: The 90,000# ifdefs issue." Proc. USENIX Conf. 2014.

[KLP02] Kang, Kyo C., Jaejoon Lee, and Patrick Donohoe. "Feature-
oriented product line engineering." IEEE software 19.4 (2002): 58-65.

[YB98] Smaragdakis, Yannis, and Don Batory. "Implementing layered
designs with mixin layers." ECOOP’98—Object-Oriented Programming.
Springer Berlin Heidelberg, 1998. 550-570.

[HCN08] Hirschfeld, Robert, Pascal Costanza, and Oscar Nierstrasz.
"Context-oriented programming." Journal of Object Technology 7.3
(2008).

