
Fundamentals of MCSComputer Architecture #3“Parallelism”
Toshio Endo

endo@is.titech.ac.jp
www.el.gsic.titech.ac.jp

1

Improvement of Processor Clock
Around 1980 Present

2MHz  1clock = 500ns

Access time = 2000ns(?)

2GHz  1clock = 0.5ns

Access time = 50ns or more

CPU

Memory

x1000

x40(?)

Will processor clocks become further faster?
Will we have 2THz CPUs 30years later?

2

Trend of Processors
• Growth of clock speed of processors has stopped around 2003
• Instead, the number of cores is increasing

– Even cellphones have dual-core processors
“Slow&Parallel” approach

3

Hierarchy of Parallelism
• SIMD parallelism

– multiple operations can be done simultaneously (SIMD)
– MMX, SSE, AVX

• Multi-Core (Multi-CPU) parallelism
– Multiple cores can work cooperatively
– Pthread, Java thread, OpenMP

• Using GPU (skipped in this lecture)
– Thousands of GPU cores
– CUDA, OpenCL, OpenACC

• Multi-Node parallelism
– Multiple nodes can work cooperatively
– Socket, Hadoop, MPI

4

Hierarchy of Parallelism in Modern Computers

5

Core Core Core Core
CPU

Core Core Core Core
CPU

Memory channels

Memory Memory
Memory channels

Node (Computer) NIC

To Other Computers

Cache

ALU

Core Core Core Core
CPU

Core Core Core Core
CPU

Memory channels

Memory Memory
Memory channels

Node (Computer) NIC

To Other Computers

Cache

ALU

No ParallelismWith Typical Programming Languages(C, Fortran, Java, Python…)

6

Core Core Core Core
CPU

Core Core Core Core
CPU

Memory channels

Memory Memory
Memory channels

Node (Computer) NIC

To Other Computers

Cache

ALU

SIMD parallelism(SSE, AVX…)

7

Harnessing Intra-core Parallelism: SIMD Programming
• SIMD = Single Instruction Multiple Data

– Multiple operations can be done simultaneously
• Tightly coupled with CPU architecture

– In Intel CPUs, MMX  SSE  AVX
• TSUBAME2 nodes support SSE• Usually written by assembly language

– gcc and Intel compilers supports special methods called “intrinsics”
– _mm_load_pd, _mm_mul_pd, _mm_add_pd…
– Some recent compilers can produce SIMD instructions automatically!

8

Basics of SSE

• In SSE, 128 bit (16byte) packed type is used
– __m128d value can contain 2 double values
– __m128 value can contain 4 single values

• In AVX, 256 bit packed type is used

With normal operations With SSE operations
a = b+c;d = e+f; ad = _mm_add_pd(be, cf);

b e
c f

da

+ +

= =

__m128d type

9

SSE Operations
Use gcc or Intel compiler
• __m128d a = _mm_load_pd(p);

– Makes _m128d value that contains p[0], p[1]
– Hereafter, a0, a1 mean contents of a
– pd means “packed double”

• __m128d c = _mm_add_pd(a, b);
– c0 = a0+b0; c1 = a1+b1;

• __m128d c = _mm_mul_pd(a, b);
– c0 = a0*b0; c1 = a1*b1; (not dot product)

• __mm_store_pd(p, a);
– p[0] = a0; p[1] = a1;

• Also there are “packed single” version
– Such as __m128 a = _mm_load_ps(p);

10

Matrix Multiply with SSE
With normal operations With SSE operations

for (j = 0; j < n; j++) {for (l = 0; l < k; l++) {double blj = B[l+j*ldb];for (i = 0; i < m; i++) {double ail = A[i+l*lda];C[i+j*ldc] += ail*blj;} } }

#include <emmintrin.h>#include <xmmintrin.h>:for (j = 0; j < n; j++) {for (l = 0; l < k; l++) {__m128d bv = _mm_load_pd1(&B[l+j*ldb]);double *ap = &A[l*lda];double *cp = &C[j*ldc];for (i = 0; i < m; i += 2) {__m128d av = _mm_load_pd(ap);__m128d cv = _mm_load_pd(cp);av = _mm_mul_pd(av, bv);cv = _mm_add_pd(cv, av);_mm_store_pd(cp, cv);ap += 2;cp += 2;} } }

A working program is avaiable at~endo-t-ac/mcs/sse/mmsse.cIn TSUBAME
11

Matrix Multiply Performance
Imple IJL ILJ JIL JLI LIJ LJI JLI-SSE JLI-SSE(unroll) GotoBLAS(1core)
Speed(Gflops) 0.25 0.12 0.25 1.92 0.12 1.65 2.82 3.71 11.8

• JLI version with SSE gets faster
• Loop unrolling improves performance
• Still slower than GotoBLAS

• Please refer to: K. Goto, R. Geijn: Anatomy of high-performance Matrix Multiplication, ACM TOMS 2008

12

Core Core Core Core
CPU

Core Core Core Core
CPU

Memory channels

Memory Memory
Memory channels

Node (Computer) NIC

To Other Computers

Cache

ALU

Multi-Core/Multi-CPU Parallelism(Pthreads, Java threads, OpenMP…)

13
MIMD = Multiple Instruction Multiple Data

• Multiple streams of operations (threads or processes) can work cooperatively

Threads and Processes
• In a computer, several processes are running

– Each process has distinct memory space
• In a process, one or several threads are running

– Threads in a process share a memory space
• Threads and processes are scattered among cores by OS
• Thread programming:

• Pthreads, Java threads, OpenMP, Cilk…
• OpenMP, Java threads internally uses pthreads
• For more details, please attend “practical parallel computing” / “実践
的並列コンピューティング” in the summer semester / 夏学期. (Sorry in Japanese)

14

Basics of OpenMP

15

#include <omp.h>
int main(){ A;#pragma omp parallel{ B;}C;#pragma omp parallelD;E;}

A
B

C
D

E
Blocks or sentences just after #pragma omp parallel
becomes “parallel regions”

fork

join

B, D are executed
by multiple threads
in parallel

Using Parallel Regions of OpenMP
• The number of threads is determined by “OMP_NUM_THREADS” environment variable
• You can write any code fragment in parallel regions

– Unlike SIMD, each thread can execute completely different operations
• To parallelize for loop, “parallel for” idiom may be useful

16

#pragma omp parallel forfor (i = 0; i < 100; i++) {a[i] = b[i]+c[i];}
100 tasks are distributed byOMP_NUM_THREADS threadsautomatically

Matrix Multiply with OpenMP
• j-loop or i-loop can easily parallelized

17

A
B
C

Matrix A is touched by
all threads

threads

#pragma omp parallel forfor (j = 0; j < n; j++) {for (l = 0; l < k; l++) {double blj = B[l+j*ldb];for (i = 0; i < m; i++) {double ail = A[i+l*lda];C[i+j*ldc] += ail*blj;} } }
• l-loop has difficulty due to dependency between operations

Performance of Matrix Multiply
Program JLI JLI-SSE JLI-SSE(unroll) GotoBLASSpeed(Gflops) 1.92 2.82 3.71 11.8

18

Program JLI JLI-SSE JLI-SSE(unroll) GotoBLAS
Speed(Gflops) 20.3 25.3 26.7 119

1 thread

12 threads

10.6x 9.0x 7.2x 10.1x

Why Is Speed-up <12 ?
• Load imbalance

– If some threads have more tasks, they become bottleneck
– It does not seems the case now

• Critical path
– Such as mutual execution (Skipped in this lecture, sorry!)

• Contention of memory access
– Bandwidth of memory channel is finite

• False sharing (later)
19

Busy time
Idle time

Effects of Memory Contention

20

0
2000
4000
6000
8000

10000
12000
14000

1 2 3 4 5 6 7 8 9 10 11 12

Sp
eed

 (M
B/s

)

Number of threads

#pragma omp parallel forfor (i = 0; i < n; i++) a[i] = b[i];
To observe memory contention, memory copy program was measured

• Speed was calculated by (Read bytes + Write bytes) / time

Only 1.35x speed-up
In 12 threads (12 cores) case, cost of each memory missincreases by 12/1.35=8.9 times

Multi-Node Parallelism With Communication(Sockets, Hadoop, MPI…)  Appeard in Next lecture

21

Core Core Core CoreCPU Core Core Core CoreCPU

Memory channels
Memory Memory

Memory channels

Node (Computer) NIC

Core Core Core CoreCPU Core Core Core CoreCPU

Memory channels
Memory Memory

Memory channels

Node (Computer) NIC

Core Core Core CoreCPU Core Core Core CoreCPU

Memory channels
Memory Memory

Memory channels

Node (Computer) NIC

Core Core Core CoreCPU Core Core Core CoreCPU

Memory channels
Memory Memory

Memory channels

Node (Computer) NIC

Network Switch(es)

CACHE IN PARALLEL SYSTEMS

22

Cache of Multicore Processors

23

CPU core
L1 cache (16KB + 16KB per core)

memory

CPU

Intel Xeon X5670 (CPU used in TSUBAME2)

L2 cache (256KB per core)
L3 cache (12MB, shared)

Cf) “lscpu” Linux command gives information

Assumptions in this Lecture
• We discuss a simplified cache model

24

cache

memory

CPU core
• There is only a single level cache
• Each core has a distinct (non-shared) cache
• We assume write-back protocol

– Written new data is reflected to main memory lazily
• We consider only sequential consistency, not relaxed consistency

Difficulty in Parallel Cache

25

• How can we avoid reading “wrong” data?
– We call this “keeping consistency”
– There is protocol to keep consistency among caches

… 3B 4C 5D 6F 70 …

cache

Memory

12345640 3B 4C AB CD ...
cache

12345640 3B 4C 5D 6F …

MSI Protocol
• MSI protocol is the simplest protocol to keep consistency
• Each cache line in cache is in one of 3 modes

– Modified
– Shared
– Invalid

26

cache
Address Data

456789C0 23 45 67 89 … 24 35 46 57
2DCBA940 FE DC BA 98 …13 57 9B DF
(invalid)

34FEDC00 11 22 33 44 … FF 00 11 22
64 bytes

Address Data Mode
456789C0 23 45 67 89 … 24 35 46 57 M
12345640 3B 4C 5D 6F … … … 20 S
--- --- I

34FEDC00 11 22 33 44 … FF 00 11 22 S

Modes in MSI Protocol
• Invalid:

– This line is not used
• Shared:

– This line may be shared by several caches
– Contents of line is same as other cache or memory

• Modified:
– Contents of line has been modified by CPU core
– Contents of line may differ from memory
– There must only line for the address among caches

27

Cache Behavior in MSI Protocol (1)
• Here line 12345640 is “Shared”

28

… 3B 4C 5D 6F 70 …

cache

Memory

12345640 3B 4C 5D 6F ... S
cache

12345640 3B 4C 5D 6F ... S

Core 0 Core 1

• What happens if core 0 executes “write”?

Cache Behavior in MSI Protocol (2)
• Write to a shared line includes:

– Make other shared line (if exist) invalid (called invalidate)
– Make own line modified
– Write to its own line

29

… 3B 4C 5D 6F 70 …

cache

Memory

12345640 3B 4C 5D 6F ... S
cache

12345640 3B 4C 5D 6F ... S

Core 0 Core 1

…. ... I
12345640 3B 4C AB CD... M

• What happens if core 1 executes “read”?

Cache Behavior in MSI Protocol (3)
• Read-miss (by core 1) includes:

– If there is modified line in other cache
• let the owner copy back the contents to memory
• Make owner’s line shared

– Core 1 Reads from memory

30

… 3B 4C 5D 6F 70 …

cache

Memory

12345640 3B 4C 5D 6F ... S
cache

12345640 3B 4C 5D 6F ... S

Core 0 Core 1

…. ... I
12345640 3B 4C AB CD... M12345640 3B 4C AB CD... S

… 3B 4C AB CD 70 …

12345640 3B 4C AB CD... S

• It includes 2 memory operations (>200 clocks)

Other Protocols
Extensions of MSI
• MOSI

– Modified, Owned, Shared, Invalid
• MESI

– Modified, Exclusive, Shared, Invalid
• MOESI

– Modified, Owned, Exclusive, Shared, Invalid
• MESIF

– Modified, Exclusive, Shared, Invalid, Forward
31

Approaches for Performance Improvement
• The key for performance is avoiding frequent operation involving memory

– Mode-change involves memory operations  heavy
• If data is read-only, sharing is harmless

– The shared cache line remains “S” mode
• If data is read-write (RW), it is better to make it discrete (localize)

Sharing RW DataWhat is False Sharing?
• No sharing:

– Each core (thread) accesses distinct data on distinct cache line
 Usually efficient

• (True) sharing:
– Cores have access to the same data
 Inefficient, due to mode change and mutual exclusion

• False sharing:
– In programmers’ intention, RW data is localized
– But the data resides in a single cache line
 inefficient, in spite of programmers’ intention

33

Cache line size

Example of False Sharing

• Although cores update different values, they are treated as “unique” in cache line level!  very slow

34

int local_results[n_of_threads];#pragma omp parallel{ id = omp_thread_num(); // get thread IDfor (….) { // many timeslocal_results[id] += …; // write operations} }

#define PAD 16 // PAD*sizeof(int) should be >=64int local_results[n_of_threads * PAD];#pragma omp parallel{ id = omp_thread_num(); // get thread IDfor (….) { // many timeslocal_results[id*PAD] += …; // write operations} }

An example ofImprovement
w/o false sharing

An example of summation per thread
With false sharing

Today’s Summary
• Being aware of parallelism is the key, if you worry about performance

– High performance software is energy efficient!
– Even smart phones have multi-core CPUs

• Hierarchical parallelism
– SIMD
– Thread programming for multi-core, multi-CPU

• Cache algorithm is more complicated to support multi-core/CPU
– Multi-node using network (in next lecture)

• There are many bottlenecks that degrade actual speedup
– Memory contention, load imbalance, false sharing of cache…

35

Assignment for Architecture Part
• Please write a report of 2—4 pages

– Submit via OCW, or
– E-mail me (endo@is.titech.ac.jp)

• Choose one of problems 1, 2 or 3
• Due: Monday, February 15
• Longer than 4 pages is ok
• It is a good idea to use figures
1. Summarize one (or more) of MOSI, MESI, MOESI, MESIF protocols

– When and how is it better than MSI protocol?
36

Assignment for Architecture Part(cont’d)
2. Summarize and discuss the paper
• K. Goto, R. Geijn:

Anatomy of high-performance Matrix Multiplication,
ACM TOMS 2008, 25 pages
– Optimized matrix operations algorithm, mainly matrix multiply (GEMM), considering cache architecture
– Partial summary is ok

37

Assignment for Architecture Part(cont’d)3. Summarize and discuss the paper
3(a) R. A. van de Geijn and J. Watts:SUMMA: scalable universal matrix multiplication algorithm, Concurrency - Practice and Experience, 9(4):255–274, 1997http://www.netlib.org/lapack/lawnspdf/lawn96.pdfOR3(b) [advanced] J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, O. Spillinger: Communication-Optimal Parallel Recursive Rectangular Matrix Multiplication, IEEE IPDPS 2013, 12 pages

– Papers about efficient matrix multiplication algorithms (Related to next lecture)
– Partial summary is OK

38

Next Lecture
• Feb 1 (Mon): Network

• Network, especially in supercomputers
• Distributed matrix multiplication algorithm

– (Related to assignment 3)

