Fundamentals of MCS
Computer Architecture #3
“Parallelism”

Toshio Endo
endo@is.titech.ac.jp
www.el.gsic.titech.ac.jp

Improvement of Processor Clock

Around 1980

Present

CPU

2MHz = 1clock = 500ns

2GHz = 1clock = 0.5ns

x1000

=

Memory

Access time = 2000ns(?)

Access time = 50ns or more

Will processor clocks become further faster?
Will we have 2THz CPUs 30years later?

10,000,000

1,000,000

100,000

10,000

100

10

0

1870

Trend of Processors

Dual-Core Itanium 2

Intel CPU Trends 4
(sources: Intel, Wikipedia, K. Olukotun) -

. i Growth of clock speed of
. processors has stopped

around 2003

* |nstead, the number of

cores is increasing

— Even cellphones have dual-

core processors

// L “Slow&Parallel” approach

@ Transistors (000) L

@ Clock Speed (MHz)

90 APower (W)

© Perf [Clock (ILP)

1830 1935 2000 2005 2010

Hierarchy of Parallelism

SIMD parallelism \

— multiple operations can be done
simultaneously (SIMD)

— MMX, SSE, AVX
Multi-Core (Multi-CPU) parallelism
— Multiple cores can work cooperatively
— Pthread, Java thread, OpenMP j

Using GPU (skipped in this lecture)
— Thousands of GPU cores

— CUDA, OpenCL, OpenACC
Multi-Node parallelism

— Multiple nodes can work cooperatively
— Socket, Hadoop, MPI

Hierarchy of Parallelism in Modern Computers

To Other Computers

Node (Computer) NTe
|
CPU CPU
Core Core Core Core Core Core Core Core
o I I I I I I I I
Cache | |
|| ||
Memory channels Memory channels

No Parallelism

With Typical Programming Languages

(C, Fortran, Java, Python...)

To Other Computers

ALU —]

Cache _|

Node (Computer)

NIC

CPU

Core

Core

Core

Core

CP

U

Core

Core

Core

Core

Memory channels

SIMD parallelism
(SSE, AVX...)

To Other Computers

ALU —]

Cache _|

Node (Computer)

NIC

CPU

CPU

Core

-
Memory channels

emory channels

Harnessing Intra-core Parallelism:
SIMD Programming

* SIMD = Single Instruction Multiple Data
— Multiple operations can be done simultaneously

e Tightly coupled with CPU architecture

— In Intel CPUs, MMX = SSE = AVX
 TSUBAME2 nodes support SSE

e Usually written by assembly language

— gcc and Intel compilers supports special methods
called “intrinsics”

— mm_load _pd, mm_mul_pd, mm_add pd...

— Some recent compilers can produce SIMD instructions
automatically!

Basics of SSE

With normal operations With SSE operations
a =b+c; — ad = _mm_add_pd(be, cf);
d = e+f;
__m128d type
e In SSE, 128 bit (16byte)
packed type is used b e
— __m128d value can contain + +
2 double values C £
— __m128 value can contain ’ Y
4 single values r
a

* In AVX, 256 bit packed
type is used

SSE Operations

Use gcc or Intel compiler

e ml28da=_mm_load pd(p);
— Makes _m128d value that contains p[0], p[1]
— Hereafter, a0, al mean contents of a
— pd means “packed double”

__m128d c=_mm_add_pd(a, b);
— ¢c0=2a0+b0; c1 =al+bil;
__m128d c=_mm_mul_pd(a, b);
— ¢c0=a0%*b0; c1 =al*bl; (not dot product)
__mm_store_pd(p, a);
— p[0] = a0; p[1] = al;
Also there are “packed single” version
— Suchas __ml128a=_mm_load_ps(p);

10

Matrix Multiply with SSE

With normal operations

for (j=0;j<n; j++) {
for (1=0; 1 <k; [++) {
double blj = B[l+j*Idb];
for (i=0;i<m;i++) {
double ail = A[i+*Ida];
Cli+j*Idc] += ail*blj;
P}

O

A working program is avaiable at
~endo-t-ac/mcs/sse/mmsse.c
In TSUBAME

With SSE operations

#include <emmintrin.h>
#include <xmmintrin.h>

for (j=0;j<n; j++) {
for (I=0; 1 <k; 14++) {

~ m128d bv=_mm_load pd1(&B[l+j*Idb]);

double *ap = &A[l*Ida];

double *cp = &C[j*Idc];

for(i=0;i<m;i+=2){
~_m128d av=_mm_load pd(ap);
. m128d cv=_mm_load pd(cp);
av=_mm_mul_pd(av, bv);
cv=_mm_add_pd(cv, av);
~mm_store_pd(cp, cv);
ap += 2;
cp += 2;

11}

11

Matrix Multiply Performance

JLI-SSE |GotoBLAS
Imple 1JL ILJ JIL JLI LIJ LJI |JLI-SSE|(unroll)| (1core)

Speed
(Gflops)| 0.25 | 0.12 | 0.25 | 1.92 | 0.12 | 1.65 | 2.82 | 3.71 11.8

* JLI version with SSE gets faster
* Loop unrolling improves performance

e Still slower than GotoBLAS

* Please refer to: K. Goto, R. Geijn: Anatomy of high-
performance Matrix Multiplication, ACM TOMS 2008

Multi-Core/Multi-CPU Parallelism
(Pthreads, Java threads, OpenMP...)

To Other Computers

Node (Computer)

CPU CPU

Core Core Core Core Core Core Core Core

- -
Memory channels Memory channels

MIMD = Multiple Instruction Multiple Data
* Multiple streams of operations (threads or processes) can work cooperatively

Threads and Processes

In a computer, several processes are running
— Each process has distinct memory space

In a process, one or several threads are running
— Threads in a process share a memory space
Threads and processes are scattered among cores by OS

Thread programming:

Pthreads, Java threads, OpenMP, Cilk...
OpenMP, Java threads internally uses pthreads

For more details, please attend “practical parallel computing” / “SE %
At HaE 2a—T 4> %" in the summer semester / EFEA. (Sorry
in Japanese)

14

Basics of OpenMP

#incl h
include <omp.h> B, D are executed A

int main() by multiple threads
{ in parallel ™

A, B
#pragma omp parallel

{

B;

} C

¢
#pragma omp parallel

D; D

E;
}

E

Blocks or sentences just after #pragma omp parallel
becomes “parallel regions”

Using Parallel Regions of OpenMP

 The number of threads is determined by
“OMP_NUM_THREADS” environment variable
* You can write any code fragment in parallel regions

— Unlike SIMD, each thread can execute completely different
operations

* To parallelize for loop, “parallel for” idiom may be
useful

#pragma omp parallel for

)) . 100 tasks are distributed by
f =0:1<100; 1++
O;Eil] :OB[Ii] +c[i?'0’ I+ OMP_NUM_THREADS threads
} ' automatically

Matrix Multiply with OpenMP

* j-loop ori-loop can easily

parallelized

#pragma omp parallel for
for (j = 0; j < n; j++) {
for (1=0; | <k; [++) {
double blj = B[l+j*Idb];
for (i=0; i< m;i++) {
double ail = Afi+*Ida];
Cli+j*Idc] += ail*blj;
b

\\//

Tow
3| B

Matrix A is touched by
all threads

* |-loop has difficulty due to dependency between

operations

17

Performance of Matrix Multiply

1 thread
JLI-SSE
Program JLI JLI-SSE (unroll) | GotoBLAS
Speed
Gflops) | 1.92 | 2.82 | 3.71 | 11.8
12 threads
JLI-SSE
Program JLI JLI-SSE (unroll) | GotoBLAS
Speed
Gflops) | 20.3 | 25.3 | 26.7 | 119
10.6x 9.0x 7.2X 10.1x

18

Why Is Speed-up <12 ?

Load imbalance

— If some threads have more tasks, }Busy time
they become bottleneck
— It does not seems the case now _Hdle time
Critical path

— Such as mutual execution (Skipped

in this lecture, sorry!) OO Qﬂ
.

Contention of memory access
— Bandwidth of memory channel is ,,__-I __________ I.__\

finite i
False sharing (later) e .

19

Effects of Memory Contention

To observe memory contention, memory copy program was measured

#pragma omp parallel for
for (i=0; i< n;i++) a[i] = bli];

Speed (MB/s)

14000
12000 -
10000 ;

8000 ‘

Only 1.35x speed-up

1 2 3 4 5 6 7 8 9 10 11 12
Number of threads

In 12 threads (12 cores) case,
cost of each memory miss
increases by 12/1.35=8.9
times

» Speed was calculated by (Read bytes + Write bytes) / time

20

Multi-Node Parallelism With Communication
(Sockets, Hadoop, MPI...) 2 Appeard in Next lecture

Node (Computer)

CPll

Cord

Core

Core

Corsg

Memory channels

Memor

emory channels

Node (Computer)

Cord

Corsg

Core

Node (Computer)

NIC

Cordg

iore I

Network
Switch(es)
Node (Computer)
CPLI CPLI
Cor ICore iore iore ICore iore iore ICore
T T

Memory channels

emo

CACHE IN PARALLEL SYSTEMS

Cache of Multicore Processors

mory Coh‘t_roller i

Intel Xeon X5670
(CPU used in TSUBAME?2)

\ CPU

— CPU core
| L1 cache
(16KB + 16KB per core)
~. L2 cache
\ (256KB per core)
N\, L3 cache

I (12MB, shared)

memory

Cf) “Iscpu” Linux command gives information

Assumptions in this Lecture

 We discuss a simplified cache model

O

CPU core

cache

memory

There is only a single level cache

Each core has a distinct (non-
shared) cache

We assume write-back protocol
— Written new data is reflected to
main memory lazily
We consider only sequential
consistency, not relaxed
consistency

Difficulty in Parallel Cache

O O

cache cache

12345640| 3B 4CIAB Cg

12345640|3B 4C|5D 6F{...

Memor
y ... 3B 405D 6F|70 ...

 How can we avoid reading “wrong” data?
— We call this “keeping consistency”
— There is protocol to keep consistency among caches

25

MSI Protocol

* MSI protocol is the simplest protocol to keep consistency
 Each cache line in cache is in one of 3 modes

— Modified

— Shared

— Invalid

cache

Caagress | owa | wode
M
S
I

456789C0 | 23456789 ...24 354657
12345640 | 3B4C5D 6F 20

34FEDCOO | 11223344 ... FF00 11 22 S

Y
64 bytes

Modes in MSI Protocol

 |nvalid:

— This line is not used

 Shared:

— This line may be shared by several caches
— Contents of line is same as other cache or memory

* Modified:
— Contents of line has been modified by CPU core

— Contents of line may differ from memory
— There must only line for the address among caches

Cache Behavior in MSI Protocol (1)

e Here line 12345640 is “Shared”

Co[e 0 Cor_e 1
cache cache

12345640 |3B4C5D 6F .. S |

‘ 12345640 |3B4C5D 6F ..1 S

...3B4C5D 6F 70 ...

Memory

* What happens if core O executes “write”?

Cache Behavior in MSI Protocol (2)

* Write to a shared line includes:
— Make other shared line (if exist) invalid (called invalidate)
— Make own line modified
— Write to its own line

Co[e 0 Cor_e 1
cach cache

12345640 3B 4C

Memor
y ...3B4C5D 6F 70 ...

 What happens if core 1 executes “read”?

Cache Behavior in MSI Protocol (3)

e Read-miss (by core 1) includes:

— If there is modified line in other cache
* |et the owner copy back the contents to memory

 Make owner’s line shared
— Core 1 Reads from memory

Co[e 0 Cor_e 1
cache cache
12345640 |3B 4C AB CD..!
| 12345640 |3B4C ABCD..| S

Memory

...3B4CAB CD 70 ...

* Itincludes 2 memory operations (>200 clocks)

30

Other Protocols

Extensions of MSI

 MOSI
— Modified, Owned, Shared, Invalid

* MESI
— Modified, Exclusive, Shared, Invalid

* MOESI
— Modified, Owned, Exclusive, Shared, Invalid

* MESIF
— Modified, Exclusive, Shared, Invalid, Forward

Approaches for Performance
Improvement

The key for performance is avoiding frequent operation
involving memory

— Mode-change involves memory operations = heavy
If data is read-only, sharing is harmless

— The shared cache line remains “S” mode

If data is read-write (RW), it is better to make it discrete
(localize)

Sharing RW Data
What is False Sharing?

No sharing:

— Each core (thread) accesses distinct data
on distinct cache line

- Usually efficient

(True) sharing:
— Cores have access to the same data

- Inefficient, due to mode change and
mutual exclusion

False sharing:

— In programmers’ intention, RW data is
localized

— But the data resides in a single cache line

- inefficient, in spite of programmers’
intention

4+ —>

Q Q
+1

N

OM%KO

33

An example of
summation
per thread

With false sharing

Example of False Sharing

int local_results[n_of threads];
#pragma omp parallel
{
id = omp_thread num(); // get thread ID
for (....) { // many times
local_results[id] += ...; // write operations

1}

e Although cores update different values, they are treated as
“unigue” in cache line level! - very slow

An example of
Improvement

w/o false sharing

#define PAD 16 // PAD*sizeof(int) should be >=64
int local_results[n_of threads * PAD];
#pragma omp parallel
{
id = omp_thread num(); // get thread ID
for (....){ // many times
local_results[id*PAD] += ...; // write operations

1}

34

Today’s Summary

* Being aware of parallelism is the key, if you worry about
performance
— High performance software is energy efficient!
— Even smart phones have multi-core CPUs

* Hierarchical parallelism

— SIMD

— Thread programming for multi-core, multi-CPU
» Cache algorithm is more complicated to support multi-core/CPU

— Multi-node using network (in next lecture)

 There are many bottlenecks that degrade actual speedup
— Memory contention, load imbalance, false sharing of cache...

Assignment for Architecture Part

* Please write a report of 2—4 pages
— Submit via OCW, or
— E-mail me (endo@is.titech.ac.jp)

* Choose one of problems 1, 2 or 3
 Due: Monday, February 15

* Longer than 4 pages is ok
* |tisagood idea to use figures

1. Summarize one (or more) of MOSI, MESI, MOESI, MESIF
protocols

— When and how is it better than MSI protocol?

36

Assignment for Architecture Part
(cont’d)

2. Summarize and discuss the paper

* K. Goto, R. Geijn:
Anatomy of high-performance Matrix Multiplication,
ACM TOMS 2008, 25 pages

— Optimized matrix operations algorithm, mainly matrix
multiply (GEMM), considering cache architecture

— Partial summary is ok

Assignment for Architecture Part
(cont’d)

3. Summarize and discuss the paper

3(a) R. A. van de Geijn and J. Watts:
SUMMA: scalable universal matrix multiplication algorithm,
Concurrency - Practice and Experience, 9(4):255-274, 1997
http://www.netlib.org/lapack/lawnspdf/lawn96.pdf
OR

3(b) [advanced] J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O.
Schwartz, O. Spillinger:
Communication-Optimal Parallel Recursive Rectangular Matrix
Multiplication,

IEEE IPDPS 2013, 12 pages

— Papers about efficient matrix multiplication algorithms (Related to next
lecture)

— Partial summary is OK

Next Lecture
 Feb 1 (Mon): Network

* Network, especially in supercomputers

e Distributed matrix multiplication algorithm
— (Related to assignment 3)

