
Fundamentals of MCSComputer Architecture #2
Toshio Endo

endo@is.titech.ac.jp
www.el.gsic.titech.ac.jp

1

CACHE MEMORY (CONT’D)

2

Cache Memory
• Fast and small memory (usually) included in CPU
• Used to store data that have been recently accessed
• Used automatically --- Sometimes programmers do not know existence of cache memory

L3 cache (12MB)

L1 (64KB), L2 (256KB) cache are included in each core

(Main) memory
3

Memory Access with Cache
Example: CPU executes “read access to address 0x12345642”
1. Calculate the start address of cache line that includes target address
2. Search address 0x12345640 in cache

2-1: If found, cache hit (We go to Step 5.)
2-2: If not found, cache miss (This is the case now)

3. Select a “victim” line in cache, to be deleted
4. Copy 64byte data from [0x12345640, 0x1234567F] in memory to cache (This takes >100 clocks)
5. Deliver the desired data to CPU core

4

Characteristics of CPU with Cache
• Time to execute a memory access instruction is not constant

– In cache hit cases, a few clocks
– In cache miss cases, >100 clocks

• Due to existence of cache lines, sequential memory access tends to raise higher cache hit ratio
– Program A accesses to 12345642, 12345644, 12345646…
 Good locality
– Program B accesses to 12345642, 1234A000, 23456780…
 Bad locality

5

Example of Sequential Access
for (i = 0; i < n; i++) A[i] = A[i]*2.0;
• We assume that cache is empty, when the programs begins
• We assume A[i] has double type (8Byte)

Read(cache miss)100 clocks

timeCalc
Write

(cache hit)
Read

(cache hit)

Read(cache miss)100 clocks

i=0 i=1 i=2 i=8

6

• Much more efficient than “No cache” CPU in p. 4
• Actual CPU is even more efficient, due to pipelined execution

Deeper Insights: Cache Design Policy
• How the “victim” line is selected?

– Direct mapping, or set associative or full associative
• “Write” is more complex than read!

– Write through, or Write back

7

• These policy is chosen by processor makers (Intel, AMD, Intel…), so users cannot change it
• Memory access is done by hardware (not software), too complex method is impractical

• For example, there is no commercial CPU with full associative cache

How the “victim” line is selected?Direct Mapping Method (1)
• Let the target address be 0x12345642

= (binary notation)

8

32bit address
offsetindextag

00010010001101000101011001000010

• In our example cache (64B x 4K lines = 256KB),
– offset is 6 bit (=log 64)
– index is 12 bit (= log 4096)
– tag is 14 bit (= 32-12-6)

How the “victim” line is selected?Direct Mapping Method (2)
• Victim is determined by index of the address
• When index is 000101011001 = 0x159 = 345, 345-th line in the cache is selected

9

Index Address Data
0 45640000 23 45 67 89 … 24 35 46 57
1 2DC80040 FE DC BA 98 …13 57 9B DF

345 … … … … …

4095 34FFFFC0 11 22 33 44 … FF 00 11 22
64 bytes

Memory
1234564012345641123456421234564312345644

1234567F

3B4C5D6F70

20victim

Problems of Direct Mapping
• Direct mapping looks like a simple “hash” algorithm
• In unlucky cases, more cache misses may occur than expected

• If address A and address B has the same index (unfortunately), cache hit ratio = 0%
 Full Associative method with LRU policy could avoid hash collision, but impractical

・ Remember that cache is made of hardware/circuit!
An intermediate method is called set associative method

10

for (i = 0; i < n; i++) A[i] = A[i]+B[i];

cache

How the “victim” line is selected?n-way Set Associative Method (1)
• Cache memory hold n tables of cache lines

– n=1 means direct mapping
– The figure shows n=2 (2-way set associative) case

• Typically, n=4 ~ 16

11

Index Address Data Fl
0 45640000 … … … …
1 2DC80040 … … … … X
: : :

345 … … … … … X
: : :

2047 34FFFFC0 … … … …

Index Address Data Fl
0 C39C0000 … … … … X
1 15280040 … … … …
: : :

345 … … … … …
: : :

2047 687FFFC0 … … … … X

0-way Table 1-way Table

How the “victim” line is selected?n-way Set Associative Method (2)
• When index is obtained (345 for example), there are ncandidates for victim
• The basic policy is “to keep data recently accessed”
• If n=2, a flag is used to show recently accessed line

12

Index Address Data Fl
0 45640000 … … … …
1 2DC80040 … … … … X
: : :

345 … … … … … X
: : :

2047 34FFFFC0 … … … …

Index Address Data Fl
0 C39C0000 … … … … X
1 15280040 … … … …
: : :

345 … … … … …
: : :

2047 687FFFC0 … … … … X

victim

If n>2, more complex mechanism is used such as Quasi LRU

Write (1)
• “Write” is different from “Read” since it changes data

13

“write 0xAB 0xCD (2byte) to 0x12345642”

… 3B 4C 5D 6F 70 …
0x12345642

cache

Memory

Write (2)
Step 1. 2. 3. are same as “Read”
4. Copy 64Byte data (cache line) to cache

14

“write 0xAB 0xCD (2byte) to 0x12345642”

… 3B 4C 5D 6F 70 …
0x12345642

cache

Memory

12345640 3B 4C 5D 6F …

Write (3)
5. Update data in cache

15

“write 0xAB 0xCD (2byte) to 0x12345642”

… 3B 4C 5D 6F 70 …
0x12345642

cache

Memory

12345640 3B 4C 5D 6F …12345640 3B 4C AB CD ...

Memory has not updated yet. How should we do?Two policies: Write through , or Write back

Write Policies
• Write through

– Update data on memory immediately
– Problem: Every write instruction takes >100 clocks

• Write back (more popular)
– Data on memory is updated later
– When the line is to be deleted as a victim, due to future cache misses
– Hardware becomes more complex, but efficient

16

Due to this time lag, multi-core cache becomes complex

Summary for (sequential) Cache Memory
• Memory performance is highly (x20~100) affected by existence of cache memory
• Considering cache line is important

– Spatial locality
– 64 Byte in current Intel CPUs

17

PARALLELISM

18

Improvement of Processor Clock
Around 1980 Present

2MHz  1clock = 500ns

Access time = 2000ns(?)

2GHz  1clock = 0.5ns

Access time = 50ns or more

CPU

Memory

x1000

x40(?)

Does processor clock further get faster?Will we have 2THz CPUs 30years later?
19

Trend of Processors
• Growth of clock speed of processors has stopped around 2003
• Instead, the number of cores is increasing

– Even cellphones have dual-core processors
“Slow&Parallel” approach

20

Hierarchy of Parallelism
• SIMD parallelism

– multiple operations can be done simultaneously (SIMD)
– MMX, SSE, AVX

• Multi-Core (Multi-CPU) parallelism
– Multiple cores can work cooperatively
– Pthread, Java thread, OpenMP

• Using GPU (skipped in this lecture)
– Thousands of GPU cores
– CUDA, OpenCL, OpenACC

• Multi-Node parallelism
– Multiple nodes can work cooperatively
– Socket, Hadoop, MPI

21

Hierarchy of Parallelism in Modern Computers

22

Core Core Core Core
CPU

Core Core Core Core
CPU

Memory channels

Memory Memory
Memory channels

Node (Computer) NIC

To Other Computers

Cache

ALU

Core Core Core Core
CPU

Core Core Core Core
CPU

Memory channels

Memory Memory
Memory channels

Node (Computer) NIC

To Other Computers

Cache

ALU

No ParallelismWith Typical Programming Languages(C, Fortran, Java, Python…)

23

Core Core Core Core
CPU

Core Core Core Core
CPU

Memory channels

Memory Memory
Memory channels

Node (Computer) NIC

To Other Computers

Cache

ALU

SIMD parallelism(SSE, AVX…)

24

Core Core Core Core
CPU

Core Core Core Core
CPU

Memory channels

Memory Memory
Memory channels

Node (Computer) NIC

To Other Computers

Cache

ALU

Multi-Core/Multi-CPU Parallelism(Pthreads, Java threads, OpenMP…)

25

Multi-Node Parallelism With Communication(Sockets, Hadoop, MPI…)

26

Core Core Core CoreCPU Core Core Core CoreCPU

Memory channels
Memory Memory

Memory channels

Node (Computer) NIC

Core Core Core CoreCPU Core Core Core CoreCPU

Memory channels
Memory Memory

Memory channels

Node (Computer) NIC

Core Core Core CoreCPU Core Core Core CoreCPU

Memory channels
Memory Memory

Memory channels

Node (Computer) NIC

Core Core Core CoreCPU Core Core Core CoreCPU

Memory channels
Memory Memory

Memory channels

Node (Computer) NIC

Network Switch(es)

Next Lecture
• Jan 18 (Mon) is cancelled
• Jan 25 (Mon): Parallelism (Cont’d)

• SIMD, Multi-core
• Maintaining consistency of cache
• About the report of this part

