Fundamentals of MCS
Computer Architecture Part 1

Toshio Endo
endo@is.titech.ac.jp
www.el.gsic.titech.ac.jp

Why Computer Architecture is
Important for Algorithm/Software?

e Understanding CPU/memory architecture is
important for “speed” of computation
— Multi-core
— SIMD
— Cache, memory system
— Network

* Improvement of algorithm complexity is (of course)
important, but architecture-aware approach is
becoming more important

Example Computation:
Matrix Multiply (matmul)

Multiplying a (m X k) matrix and a (k X n) matrix

X
m A K B j C m
K ‘ n n
for (i =05 i <m i++) {
for (j =0; j <n; j++) {
for (I =0; | <k; I++) { I
clilli1 += alll[il+b[11L]; » Complexity : O(mnk)

} Here, we assume C; is represented as C[j][i] (column-major)

Variants in matmul Implementation

 What happens if we exchange the sequence of for
loop?
— We have 6 implementations: lJL, ILJ, JIL, JLI, LIJ, LJI

— This change does affects neither computed results nor
compute complexity of O(mnk)

— Only the sequence of operations are changed

Effects of Software Implementation

* Performance of different 6 implementations of matmul

— Written in C language, not parallelized, gcc 4.3.4, -02
— Elements are “double” type
— m=n=k=1024

— On asingle node of TSUBAME2 supercomputer

Time 8.51 17.5 8.52 1.11 17.5 1.30
(sec) Slow! Fast! Slow!

Although all implementations have same complexity,
but largely different in the computation speed

What is the cause of the difference?
- We should learn computer architecture

|”

Speed of “matmu

* Actual “Flops” achieved by the software is calculated by
(The number of FP operations / Elapsed time)

* In “matmul”, the number of FP operations is
2mnk =2 x 1024 x 1024 x 1024

e o T m u w u

Time(sec) 8.51 17.5 8.52 1.11 17.5 1.30
Speed 0.25 0.12 0.25 1.92 0.12 1.65
(GFlops)

What are the reasons of the difference?
Is the fastest speed, 1.92GFlops, sufficient?
< Knowledge of architecture is required

Keywords in Recent Architecture

Multi-core

SIMD

Cache, memory system
Network

What are Components of Computers?
Very Simplified Models

RAM model PRAM model
(ramdom access machine) (parallel ramdom access machine)
Processor
(CPU cores)

Memory

* These model does not explain the difference in 6
programs...

An Example of Real Computers:

A Node in TSUBAME?2 Supercomputer
(still simplified)
L1 (64KB), L2 (256KB) cache are
included in each core QDR InfiniBand 4GB/s

2 CPUS

PCle 2.0 x16
8GB/s

“apl

DDR3 3 czannnels 25.6GB/s

NN~/

>520D/S

TSUBAME2 Node Architecture

(GPUs are omitted)

A node has 2 CPUs
— Intel Xeon X5670

Each CPU has 6 CPU cores (multi-core)
— 12 CPU cores share 54GB node memory

Each core works at 2.93GHz

On each clock, each core can execute
4 FP operations
— By using SIMD instructions called SSE
e SIMD: Single Instruction Multiple Data
— Latest CPUs can execute 8 per clock

‘Core | “Core

P Theoretical

4 x 2.93G(1/sec) x 6 x 2 = 140.8 (Gflops) | rerformance

Even in the fastest matmul implementation,
1.92GFlops is far lower than 140.8GFlops. Why?

III

Limitation of “matmu

* Only 1 core is used
e SIMD instructions are not used

— Recently clever compilers can use them, but it is
not the case now

- Considering above, 1.92GFlops is still lower
than 2.93GFlops (about 65%)

—>This is mainly due to inefficiency in cache and
memory usage

Performance of Optimized Library

e BLAS (Basic Linear Algebra Subprograms)
— An API for matrix operations

* Implementation: GotoBLAS, MKL, ACML...
— Highly optimized for each CPU architecture

UL ILJ JIL JLI LIJ LJI GotoBLAS | GotoBLAS
(1core) (12cores)

Time(sec) 8.51 17.5 8.52 1.11 175 1.30 0.182 0.0181
Speed 0.25 0.12 0.25 1.92 0.12 1.65 11.8 118.8
(GFlops)

Very Fast!

Discussion of Performance (1)

e 1 core performance (11.8GFlops) is almost the same
as theoretical one (11.7GFlops)
— This is too good??. Possibly “Intel turbo boost” is working

— Turbo boost: if node load is sufficiently low, working core is
boosted (up to 3.2GHz here)

e 12 core performance is x10.07 faster than 1 core

— x10.07 speed up is fairly good, but less than 12
— Effects of turbo boost?
— Memory contention?

Discussion of Performance (2)

* Changing matrix sizes

14

[y
N

W

Effects of SIMD Instructions

[y
o

=o—matmul-JLI

Speed (GFlops)

Performance is dropping

! —-GotoBLAS (1core)

0 1000 2000 3000 4000 5000
Size of Matrices (m=n=k)

o N B O 0

* (Naive) Simple matmul suffers from more “cache-misses”
when problem gets larger

* Optimized GotoBLAS is not only fast, but stable toward the
change of problem size

Optimizations in GotoBLAS

* Effectively use multi-core
* Effectively use SIMD instructions

* Effectively use memory system
Cache-blocking:

I I I I
A ! 1] 1 1 1 A
: 1 | 1 1 1 1 1 1

—————————————————————————

e e a1 ot B

1 A 4 | 1 1 I 1 1 1 1
v . . | - - 1 1 1 ' v

— Matricesfare broken into “blocKs”, each of which arg smaller than
cache size

— Sometimes data replacement occurs
— Also optimized to reduce TLB misses

For details, please refer:

Cf: K. Goto, R. Geijn: Anatomy of high-performance Matrix Multiplication,
ACM TOMS 2008

CPU and Memory: Past and Present

Around 1980 Present

CPU

2MHz = 1clock = 500ns 2GHz = 1clock = 0.5ns
I x1000

=)

(inte)
Xeop:
: meeSgo r

Memory

Access time = 2-000n5(?) Access time = 50ns or more

16

Memory Access Time

How long does a memory “read” instruction take?

Around 1980 Present
2MHz = 1clock = 500ns 2GHz = 1clock = 0.5ns
Access time = 2000ns(?) Access time = 50ns or more

& &

4 clocks >100 clocks!!

17

What happens If Every Memory Access

Takes 100 clocks?

for (i=0;i<n;i++) Ali] = A[i]*2.0;
i=1 time
A \ .
Read Read Read R
100 clocks 100 cIocks 100 clocks

Calc 1~4 clocks

This is very insufficient!
Computation speed would be only 10MFlops

To alleviate this problem,

cache memory has been invented in 1968.
It became popular around 1985

18

Cache Memory

e Fast and small memory (usually) included in CPU
* Used to store data that have been recently accessed

* Used automatically --- Sometimes programmers do
not know existence of cache memory

L1 (64KB), L2 (256KB)
cache are included in
each core

L3 cache (12MB)

(Main) memory

19

Memory Hierarchy of TSUBAME2 Node

CPU: Intel Xeon X5670 (Westmere)

Levell cache 64KB ~4 clocks
Level2 cache 256KB ~10 clocks
Level3 cache 12MB ~25 clocks or more

(shared by 6 cores)

Main Memory 54GB 100 clocks or more
(shared by 12 cores)

Figures for access time are

corrected from Web, and may be inaccurate

20

Assumption in This Lecture (at First)

* Modern CPUs has hierarchical
cache memory (Level 1 cache,

Level 2 cache...) - CPL
. . . . — CPU core
* For simplicity, we consider @'
— A single level cache cache
* Capacity: 256KB I— Memory channel
 Cache line size: 64B (or memory bus)
— 32 bit addresses | (Main) Memory
* Though recent CPUs have 64 bit
addresses

— Single core CPU at First, and
Multicore CPU later

Example Cache and Cache Line

 There are “units” for data movement, called cache lines

— We assume each cache line has 64bytes
— 256KB cache holds 4096 (=256K/64) cache lines

cache

Sseres | owa

456789C0 | 234567 89 ... 24 35 46 57
2DCBA940 | FE DC BA 98 ...13 57 9B DF
4096

(inva“d) - cache
- n lines
- .

34FEDCOO 11223344 .. FF00 11 22

Y
64 bytes

22

Memory Access with Cache (1)

e When CPU core executes a read instruction

[“read a 2byte data from 0x12345642”]

/

e

~

cache

Csires | s

456789C0 234567 89 ...24 3546 57
2DCBA940 FE DCBA98..1357 9B DF
(invalid)

u n

u n

u n
34FEDCOO 11223344 ... FF00 11 22

Y
64 bytes

12345640
12345641
12345642
12345643
12345644

1234567F

23

Memory Access with Cache (2)

1. Calculate the start address of cache line that
includes target address

— 0x12345642 & OxFFFFFFCO = 0x12345640

— Cache line to be accessed is [0x12345640, 0x1234567F]
(64=0x40bytes)

2. Search address 0x12345640 in cache
2-1: If found, cache hit (We go to Step 5.)
2-2: If not found, cache miss (This is the case now)

Memory Access with Cache (3)

Cache Miss Case
3. Select a “victim” line in cache, to be deleted

4. Copy 64byte data from [0x12345640, 0x1234567F] in memory

to cache (This takes >100 clocks)

cache .

Cgires | s

12345640
12345641
12345642
12345643
12345644

456789C0 23456789 ...243546 57

(invalid)

34FEDCOO 11223344 .. FF00 11 22

Y
64 bytes u

Memory

25

Memory Access with Cache

5. Deliver the desired data to CPU core

Memory
cache . -

m |
_Address | Data [N PV [

456789C0 80 ...24 354657 12345641 AC

12345642 5D
12345643 6F
12345644 70

34FEDCOO 11223344 .. FF00 11 22 1234567F 2

Y
64 bytes u

(invalid)

o

26

Characteristics of CPU with Cache

* Time to execute a memory access instruction is not
constant

— In cache hit cases, a few clocks
— In cache miss cases, >100 clocks
* Due to existence of cache lines, sequential memory
access tends to raise higher cache hit ratio

— Program A accesses to 12345642, 12345644, 12345646...
- Good locality

— Program B accesses to 12345642, 1234A000, 23456780...
— Bad locality

Example of Sequential Access

for (i=0;i<n;i++) Afi] = A[i]*2.0;

 We assume that cache is empty, when the programs begins
 We assume AJi] has double type (8Byte)

i=0 '= =
A

A A E EEEEEEEEEEEEEEDN
Read Read
(cache miss) (cache miss)
100 clocks 100 clocks
Calc Read
Write (cache hit) tlme

(cache hit)
* Much more efficient than “No cache” CPU in p.20

* Actual CPU is even more efficient, due to pipelined execution

28

Deeper Insights: Cache Policy

* How the “victim” line is selected?
— Direct mapping, or set associative or full associative

* “Write” is more complex than read!
— Write through, or Write back

* These policies are implemented by processor makers (Intel, AMD,
NVIDIA...), so users cannot change it basically

* Memory access is done by hardware (not software), too complex
method is impractical

* For example, there is no commercial CPU with full associative
cache

Agenda of Architecture Part

* Memory System
— Cache line, associativity, replacement algorithm
e Parallelism

— Multi-core
— SIMD

e Memory system and parallelism
— Maintaining consistency of cache

e Network communication

Next lecture is on Jan 12 (Tue)
Jan 18 will be cancelled

Appendix

TSUBAME?2.5 Compute Node

Theoretical performance
per node is

 CPU: 140.8 GFlops

e GPU:3.93 TFlops

e CPU+GPU:4.07 TFlops

Infiniband QDR
X2 (80Gbps)

HP SL390z 96.5% of performance is
CPU: Intel Xeon X5670 (Westmere-EP) .
2.93GHz x2 (12cores/node) contributed by GPUs

GPU: NVIDIA Fermi K20X x 3

1.31TFlops, 6GByte memory /GPU
Memory: 54GB DDR3-1333
SSD:60GBx2

TSUBAIVIEZ 5 Supercomputer

e TSUBAME2.5 (mainly) consists of 1408 compute nodes

* Total Theoretical Performance (Double precision):
5.7PFlops = 4.07TFlops x 1408

* Currently 25 supercomputer in the world
— See http://www.top500.0rg

