
Fundamentals of MCS: CS, 2014.11.9

Lecture 5: Selected Topics

— PAC Learning & Boosting

In this lecture we study one popular approach — Boosting technique — for designing

efficient learning algorithms in the PAC learning framework. We studied in the previous

lecture the notion of “Occam Razor”, a standard goal for designing reasonable learning

algorithms; that is, for a given set of examples, compute a “succinct” hypothesis that is

consistent with these examples. Unfortunately, when we try for this goal, we would often

end up with a serious computational problem; that is, this goal is often NP-complete, one

of the hardest problems in NP, and we may not hope a fast algorithm that achieves this

goal perfectly.

An Important Message from O.W: Even in this case, you want/need to

achieve your goal and design somewhat efficient algorithms. In fact, this may

not be hopeless. Note that the NP-completeness notion is for the worst-case

complexity measure; even if the problem is hard in the worst-case, it may still

be easier for many instances and it may be good enough for your purpose!

But then how can we push our formal investigation? The success story of

AdaBoost would give us a good hint for breaking such an algorithmic barrier

when you face a similar situation.

1 Preliminaries for Boosting Technique

First recall that the following is the learning goal of a PAC learning algorithm A for some

concept C.

∀ε, δ, 0 < ε, δ < 1, ∀n ≥ 1,

∃m ≥ 0 (which is determined by A from ε, δ, n),

∀D∗ (distribution over {+1,−1}n), ∀f∗ ∈ C

Pr
S:Dm

∗

[
A given S yields some h satisfying

(∗) Pr
x:D∗

[ f∗(x) 6= h(x) ] ≤ ε

]
≥ 1− δ.

If we can design an algorithm achieving this goal whose time complexity is bounded by

polynomial in 1/ε, 1/δ, and n, then we say that a concept class C is polynomial-time PAC

learnable.

A standard way to design such a learning algorithm is to construct A so that it yields

a “succinct” hypothesis that is consistent with all examples in a given sample S. Then,

based on the degree of “succinctness”, we estimate the number m of examples that is

sufficient for achieving the goal for given parameters ε and δ. (It is often the case in

practice, m is much larger than the number of data we have. In this case, we would

simply use all available examples.)
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Valiant, the founder of the PAC learning framework, somehow considered the following

weaker learning goal.

∃γ, 0 < γ < 1/2, δ << 1, ∀n ≥ 1,

∃m ≥ 0 (which is determined by B from n),

∀D∗ (distribution over {+1,−1}n), ∀f∗ ∈ C

Pr
S:Dm

∗

 B given S yields some h satisfying

(∗) Pr
x:D∗

[ f∗(x) = h(x) ] ≥ 1

2
+ γ

 ≥ 1− δ.

That is, B (almost always) produces a hypothesis that is slightly better than the “ran-

dom guess.” Here γ is called an advantage and an algorithm like this B is called a weak

learner. We say that a concept class C is weak learnable if we have a weak learner for C
whose time complexity is bounded by some polynomial in n.

Valiant asked (I guess from his theoretical interest) whether the weak learnability im-

plies the polynomial-time PAC learnability. It turned out that this theoretical question

lead to one of the important learning algorithms in Machine Learning — AdaBoost.

2 AdaBoost

A boosting technique or a boosting algorithm is an algorithm that make use of a given

weak learner B to design some learning algorithm with much higher accuracy. Below is

the general outline of boosting algorithms.

target concept: a Boolean function f∗ over n Boolean attributes in C;
distribution: a distribution D∗ over {0, 1}n;
input: parameters ε, δ, and n;

output:some hypothesis n approximating f∗;

begin

t = 1; D1 = D∗;

repeat {
ht = a hypothesis for f∗ that B yields under Dt;

γt = the advantage of ht under Dt;

αt = the degree of importance of ht;

define the (current) combined hypothesis ft as follows:

ft(x) = sign

( ∑
1≤i≤t

αihi(x)

)
;

if Pra:D∗ [ f∗(a) 6= ft(a) ] < ε then break;

Dt+1 = a new distribution made from Dt and ht;

t = t+ 1;

}
output the obtained ft;

end.
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Each repeat iteration of the above outline is called a boosting step. A combined hypoth-

esis ft is often called a weighted majority vote hypothesis.

An actual boosting algorithm is determined by defining αt and Dt appropriately. Here

we introduce one of the famous boosting techniques — AdaBoost — which is defined as

follows:

αt = ln β−1
t , wt(x) = D∗(x) ·

∏
1≤i≤t−1

β
hi(x)·f∗(x)
i , Dt(x) =

wt(x)

Wt

.

Where βt =

√
1− 2γt
1 + 2γt

, Wt =
∑

x∈{+1,−1}n
wt(x).

(1)

Formally speaking, a boosting technique is called a boosting algorithm if we prove its

convergence. For example, the key property of AdaBoost is the following convergence

theorem.

Theorem 1. For any concept class C, suppose that we have a weak learner B for C.
For any target concept f∗ ∈ C and any target distribution D∗, consider the execution of

AdaBoost by using B for t repeat iterations, and for any i, 1 ≤ i ≤ t, let γi denote the

advantage of the weak hypothesis hi that B produces at each boosting step. Then we have

Pr
x:D∗

[ f∗(x) 6= ft(x) ] <
∏

1≤i≤t

√
1− 4γ2

i . (2)

Example 1. To appreciate this convergence property, let us assume that γi ≥ 1/10 at

all iterations; that is, every weak hypothesis is just 10% better than the random guess

(i.e., 60% accuracy). In this case, we have√
1− 4γ2

i ≤
√
1− 1

25
=

√
24

5
≤ 49

50
,

and since (49/50)200 ≤ 0.02, we can guarantee that the error of f200 is less than 2%. tu

We can use this AdaBoost for obtaining a hypothesis that is consistent with a given

sample S. Let m denote the number of examples in S. We can simply use AdaBoost

with D∗(x) = 1/m for all examples x in S and D∗(x) = 0 for the other x’s to obtain a

combined hypothesis ft whose error probability is less than 1/m w.r.t. D∗; this ft must

be consistent with S.

For this application, the following update formula for wt would be useful to speed up

each boosting step.

wt+1(x) =

{
wt(x) · βt, if ht(x) = f∗(x), and

wt(x) · (1/βt), if ht(x) 6= f∗(x).
(3)

Then what about a weak learner? How can we design a week learner? In practice

we would use some simple hypothesis class for weak learner’s hypothesis class. That is,

we consider a weak learner that produces a very simple hypothesis, most typically, a
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hypothesis that gives a decision based on a single attribute. In this case it is easy to

select the best hypothesis (under the current distribution) by going through all possible

hypotheses. Since the weak learning goal is much easier, we may be able to expect that

even such a simple weak learner can achieve the goal.

An Important Message from O.W: Why does AdaBoost work? When

have we gone beyond the algorithmic barrier? Well, we assumed that a good

weak learner exists! It is quite optimistic to assume some weak learning algo-

rithm (in particular, the simple one stated in the above) can always give us

a sufficient hypothesis (even for the weak learning condition). But maybe we

can assume this up to a certain point. Boosting techniques are designed under

such assumption and they are formally analyzed and guaranteed to work so

long as this assumption holds.

We may be able to use this approach! Even though you cannot prove/solve

your target problem completely, by separating some part that is hard to ana-

lyze as a reasonable assumption, you may be able to analyze things precisely,

which may lead to a new and very useful technique!

Homework assignment from this lecture

Solve one of the following problems. (Q3.1 was given in the previous lecture.)

Q3.2. Implement AdaBoost and obtain a good hypothesis for the mushroom data. The

data and a sample program can be obtained from

http://www.is.titech.ac.jp/~watanabe/class/boost/

Use only mushroomB5000.txt for creating your hypothesis and check its performance

with mushroomB3000.txt.

Q3.3. The proof of Theorem 1 is stated below. From this proof, it is not so difficult to

see the reason why βt is defined as (1). Explain this reason.

Appendix: Proof of Theorem 1

We first show that the error probability of ft is at most Wt+1. For any instance x, we

have

f∗(x) 6= ft(x)

⇐⇒
∑

i:f∗(x)=hi(x)

log β−1
i ≤

∑
i:f∗(x) 6=hi(x)

log β−1
i

⇐⇒
∏

i:f∗(x)=hi(x)

β−1
i ≤

∏
i:f∗(x)6=hi(x)

β−1
i

⇐⇒ 1 ≤

∏
i:f∗(x)=hi(x)

βi∏
i:f∗(x)6=hi(x)

βi

=

∏
i:f∗(x)·hi(x)=+1

βi∏
i:f∗(x)·hi(x)=−1

βi

=
∏

1≤i≤t

β
f∗(x)·hi(x)
i .
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By using this characterization, we can bound the error probability of ft as follows:

Wt+1 =
∑
x

wt+1(x) ≥
∑

x:f∗(x) 6=ft(x)

wt+1(x)

=
∑

x:f∗(x)6=ft(x)

D∗(x) ·
∏

1≤i≤t

β
hi(x)·f∗(x)
i

≥
∑

x:f∗(x)6=ft(x)

D∗(x) = Pr
x:D∗

[ f∗(x) 6= ft(x) ].

Next we analyze how Wt+1 gets decreased. For this we modify the definition of Wt+1

by

Wt+1 =
∑
x

wt+1(x) =
∑
x

wt(x) · βht(x)·f∗(x)
t

=
∑

x:f∗(x) 6=ht(x)

wt(x) · βt +
∑

x:f∗(x)6=ht(x)

wt(x) · β−1
t

=
∑

x:f∗(x) 6=ht(x)

(WtDt(x)) · βt +
∑

x:f∗(x)6=ht(x)

(WtDt(x)) · β−1
t

= Wtβt ·

 ∑
x:f∗(x)6=ht(x)

Dt(x)

+Wtβ
−1
t ·

 ∑
x:f∗(x) 6=ht(x)

Dt(x)


= Wtβt · Pr

x:Dt

[f∗(x) 6= ht(x)] +Wtβ
−1
t · Pr

x:Dt

[f∗(x) = ht(x)].

where we used the recurrence formula (3).

Then by definition, we have Prx:Dt [f∗(x) = ht(x)] = 1/2 + γt; hence, the error proba-

bility is Prx:Dt [f∗(x) 6= ht(x)] = 1− (1/2 + γt) = 1/2− γt. Therefore,

Wt+1 = Wtβt ·
(
1

2
− γt

)
+Wtβ

−1
t ·

(
1

2
+ γt

)
= Wt ·

βt · (1− 2γt) + β−1
t (1 + 2γt)

2

= Wt ·
2
√

(1− 2γt)(1 + 2γt)

2
= Wt ·

√
1− 4γ2

t .

From the discussion above, the theorem is immediate from this bound.
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