
Fundamentals of MCS: CS, 2015.11.2

Lecture 4: Selected Topics (1)

— PAC Learning Framework
In this and the next lectures, we will focus on PAC learning and some algorithmic

techniques developed in PAC learning.

An Important Message from O.W: I choose these topics for illustrating

the importance of a formal framework and also some new algorithmic approach

that may be useful in many areas.

PAC learning framework was introduced by L. Valiant in his seminal 1984 CACM paper

[3], which has been an important framework for designing/analyzing learning algorithms.

A research area investigating (efficient) PAC learnability is now called as PAC Learning

Theory, which produces many basic/important results for Machine Learning.

1 Basic Definitions for PAC Learning

A concept: A learning target.

In this lecture we may consider each concept is a Boolean1 function f , a function

mapping {+1,−1}n to {+1,−1}. Each element x = (x1, . . . , xn) of {+1,−1}n is called

an input instance and value f(x) is called a label. Note that each xi is considered as a

value of the corresponding attribute.

A target concept is a concept that we want to learn. On the other hand, a hypothesis is

a concept that we would produce (or a learning algorithm yields) as an approximation of

the target.

A sample: A set of examples given for our learning task.

An example is a pair of an input instance and its label. A sample is the set of examples.

Example distribution: A probability distribution that each example is given.

For simplicity, we consider the case where a target concept is fixed to some function

f . Thus, the probability of some (x, y) occurs as an example is determined that the

probability that the instance x occurs (because then y is determined as y = f(x)). We

denote this probability as Dn(x) or D(x).

PAC: Probabilistically and Approximately Correctness. A criterion of our learning task.

Below we define this criterion step by step. Here we fix a target concept and a sample

distribution; let f∗ and D∗ to denote them respectively.

(1) For any hypothesis h, its error probability is defined by

err(h) = D∗
(
f∗(x) 6= h(x)

)
,

1Usually by “Boolean” we mean 0 or 1 value; but in Machine Learning we often use +1 for 1 and −1

for 0, and we follow this convention here.

1



where D∗(· · · ) is the abbreviation of D∗( {x : · · · } ), that is, the probability that some

instance x satisfying · · · is given (as an example).

We may also use an expression such as Prx:D∗ [Φ(x)] to denote the probability that Φ(x)

holds when x is given under the distribution D∗. Note that Prx:D∗ [Φ(x)] = D∗(Φ(x)).

Thus, a simpler notation D∗(Φ(x)) is usually used. On the other hand, for any m ≥ 1,

we use PrS:Dm
∗ [· · · ] for

PrS:Dm
∗

[
Φ(S)

]
= the probability that Φ(S) holds when a sample S

of size m given under the distribution D∗,

by which we can express more clearly that the probability is on the choice of S.

(2) We are given three parameters: n, ε, and δ, where n ≥ 1 and 0 < ε, δ < 1. n is the

number of attributes and it is usually regarded as a size parameter. ε is called an error

bound (or an approximation parameter) and δ is called a reliability bound. Parameters ε

and δ are called learning parameters.

(3) The PAC goal for a given target concept f∗ is defined as follows.

∀ε, δ, 0 < ε, δ < 1,

∃m ≥ 0,

∀D∗ (distribution over {+1,−1}n)

Pr
S:Dm

∗

[
we can obtain h from S satisfying

(∗) Pr
x:D∗

[ f∗(x) 6= h(x) ] ≤ ε

]
≥ 1− δ.

A hypothesis h satisfying (∗) is called an ε-approximation (of f∗).

(4) As discussed in the previous lecture, algorithms should be designed to handle infinite

number of instances, in particular, with increasing size. For PAC learning algorithm, we

also consider target concepts with increasing size parameter n.

An Important Message from O.W: Note here that the size parameter

is n, the number of attributes. The sample size m is not considered as size

because m can be determined by algorithms. Thus, m should be regarded as

some efficiency measure like time complexity.

We need to give some restrictions to our target concepts. A concept class is a set of

concepts satisfying a certain set of conditions; usually, we define a concept class in terms

of a way to describe Boolean functions that belong to the class.

For a given target concept class C, an algorithm A is called a PAC-learning algorithm

for C if it satisfies the following condition:

∀ε, δ, 0 < ε, δ < 1, ∀n ≥ 1,

∃m ≥ 0 (which is determined by A from ε, δ, n),

∀D∗ (distribution over {+1,−1}n), ∀f∗ ∈ C

Pr
S:Dm

∗

[
A given S yields some h satisfying

(∗) Pr
x:D∗

[ f∗(x) 6= h(x) ] ≤ ε

]
≥ 1− δ.

Furthermore, if A’s time complexity is polynomially bounded w.r.t. n, we say that A is a

polynomoal-time PAC learning algorithm (for class C).

2



2 Example and Key Result on PAC Learning

Example 1. (DL: Decision List)

A decision list is a way to describe a Boolean function as illus- x1
yes
−→ +1

no ↓
x2 ∧ x4

yes
−→ −1

no ↓
x1 ∧ x5

yes
−→ +1

no ↓
−1

trated by the right figure. In general, a decision list is a sequence

of pairs of Boolean term and a label expressed as

( (t1, b1), (t2, b2), ..., (td, bd), b ).

For example, the decision list of the right figure is expressed as

( (x1,+1), (x2 ∧ x4,−1), (x1 ∧ x5,+1),−1 )

Each term is called a branch.

Here by “Boolean term” we mean the conjunction of literals such as X1 ∧ X2 ∧ X5.

A decision list is called an k-decision list if each branch is defined by a Boolean term

with at most k literals. Let k-DL denote the class of Boolean functions expressed by

k-decision lists. Though we omit stating here, there is a simple polynomial-time PAC

learning algorithm for k-DL for any fixed k. (In the class I would explain an algorithm

for 2-DL if I have time.) tu

Now we state one of the key theorems established in the early stage of PAC Learning

Theory [1].

Theorem 1. (PAC learning is achieved by “Occam Razor”)

For any concept class C, consider any algorithm L that yields a hypothesis consistent with

a given sample. Let Hn,m be a class of hypotheses (i.e., Boolean functions) that algorithm

L may yield on some sample of size m on some target concept in C of size n. (Note that

m is determined by algorithm L from ε, δ, n.)

Let M(n,m) denote the number of hypotheses of Hn,m. For any learning parameters

ε, δ, and for any n, if we can design the algorithm so that

m ≥ 1

ε
ln

1

δ
+

lnM(n,m)

ε

holds, then L can be used as a PAC-learning algorithm for C.

Note that M(n,m) is related to the length of descriptions in Hn,m. For example,

M(n,m) is trivially bounded by 2`(n,m), where `(n,m) is the bit length of the largest

hypothesis of Hn,m. In this sense, it would be better to use hypotheses of smaller length

(and consistent with a given sample). This is why the above theorem is called Occam’s

Razor.

References

[1] A. Blumer, A Ehrenfeucht, D. Haussler, and M.K. Warmuth, Occaum’s razor, Infor-

mation Processing Letters, 24:377–380, 1987.

3



[2] M. Kearns and U. Vazirani, An Introduction to Computational Learning Theory, The

MIT Press, 1994.

[3] L. Valiant, A theory of the learnable, Communications of ACM, 27(11):1134–1142,

1984.

[4] 金森敬文，畑埜晃平，渡辺治，ブースティング，森北出版，2006．Sorry!! This is

in Japanese.

Homework assignment from this lecture

Solve one of the following problems. (More problems will be given next week.)

Q3.1. It is not so difficult to prove Theorem 1, so why don’t you prove it (without

reading the referenced paper)! You can go back to the definition and consider the

probability that one fixed hypothesis h is not an ε-approximation of a given target f∗
even though h is consistent with f∗ on m examples of S. (What is the randomness

here for discussing the probability?) Then we can use the union bound to estimate

the probability that this situation occurs on some hypothesis of Hn,m.

4


