
Computational Complexity Theory Course Note
Part I: Basics

2005.5

Computational Complexity Theory
Osamu Watanabe

Dept. Mathematical Computing Sciences, Tokyo Institute of Technology

watanabe@is.titech.ac.jp

Part I Basics

0. Introduction — What Shall We Study?

In this course, I am planning to cover the following topics.

Part I Basics

1. Problem and Algorithm

2. Computation Model and Complexity Measure

3. Hierarchy Theorem

4. Some Standard Complexity Classes

5. Reducibility and Completeness

6. Some Other Complexity Classes

Part II Some Advanced Topics

7. Polynomial-Time Hierarchy and Interactive Proof

8. One-Way Function and Pseudo Random Sequence Generator

9. Optimization Problem, Approximation, and PCP

References

[1] M. Sipser, Introduction to the Theory of Computation, PWS Pub., 1997.

[2] J. Van Leeuwen, ed., Handbook of Theoretical Computer Science, Vol.A: Algorithms

and Complexity, Elsevier, 1990.

[3] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge Univ. Press,

1995.

[4] G. Ausiello, etal, Complexity and Approximation, Springer, 1999.

1

1. Problem and Algorithm

Before starting technical explanation, let us first agree on a framework that is assumed

common to computational complexity theory.

• What is our problem?

In computational complexity theory, we consider only problems that are completely and

formally specified. But even among mathematically specified problems, a problem like

“Solve Riemann’s conjecture” is not of our interest. Instead, we consider a problem asking

for an answer to a given instance of the problem, i.e.,a problem of computing some given

function on a given input. For example, a problem is specified in the following way:

Max. Clique Problem (abbrev. CLIQUE)

Instance: An undirected graph G.

Question: What is the size of the largest clique (i.e., complete subgraph) of G?

Remarks:

1. Input instances and outputs are encoded appropriately as binary strings, i.e., finite

strings over the alphabet {0, 1}.
2. In our general discussion, the size of an input is simply its length. Throughout this

course, we use ` to denote the input size.

• Decision problem

Among computational problems like CLIQUE, we consider only “decision problems”,

where a decision problem is to decide whether a given instance is ‘yes’ (or simply 1) or

‘no’ (simply 0). For example, instead of the CLIQUE problem mentioned above we can

consider the following decision version.

Max. Clique Problem (CLIQUE)

Instance: An undirected graph G and an integer k.

Question: Does G have a clique of size ≥ k?

Remarks:

1. These two versions of CLIQUE have almost the same complexity. By using the

standard binary search strategy, we can easily solve the previous CLIQUE by using any

algorithm for its decision version. This type of relationship always holds in general.

2. Notice, however, there is some subtle difference, which becomes essential if we want

to discuss much finer complexity issue. We will see such an example later.

2

3. Any decision problem is completely specified by the set of ‘yes’ instances of the

problem, or more precisely, the set of binary strings encoding those ‘yes’ instances.

Thus, we usually identify a problem with its ‘yes’ instances. For example,

CLIQUE = { (G, k) : G has a clique of size ≥ k }.

• Function and algorithm

A problem can be regarded as a function mapping {0, 1}∗ to {0, 1}∗, and an algorithm (for

the problem) is a method for computing this function. We assume that each algorithm

is implemented by a program for some machinery, and we will identify them throughout

this course.

Notations:

function: f , gclique, ... usage: f(x) ⇐ the value of f on x.

program: A, clique, ... usage: A(x) ⇐ the output of A on x

or the execution of A on x.

We say that an algorithm A (or, a program A) solves a decision problem L if the

following holds.

∀x ∈ {0, 1}∗

 x ∈ L =⇒ A(x) = 1

x 6∈ L =⇒ A(x) = 0




3

2. Computation Model and Complexity Measure

For our basic computation model, we consider some standard computation device and as-

sume some simple programming language controlling the device. For example, we consider

the following program.

program A

input register: $1

output register: $1

work registers: $2, $3, $4

1: $2 ← · · · ⇐ Only very primitive instructions are allowed.

2: if $2 6= 0 then goto 6

3:
...

4:
...

5: goto 2

6: halt

Remarks:

1. Though we omit details, there are two choices for our model: a register contains

either a binary string, or an integer (in binary). In each choice, we assume that each

register can keep a string or an integer of any length.

2. We assume that instructions are simple but strong enough to implement any algo-

rithm. For example, there is no single instruction for the comparison of two registers;

such comparison should be implemented by a sequence of instructions.

3. We assume that each program is encoded by a binary string. For example, A is

encoded as

〈$1, $1, 〈$2, $3, $4〉, s1, s2, ..., s6〉, (⇐ this can be encoded in {0, 1}∗)

where s1, ..., s6 are codes for the statements.

4

• Time and space complexity measures

Consider any program A. For a given input x, we estimate its computation time and

consumed space as follows.

timeA(x) = the number of executed instructions until A(x) halts.

spaceA(x) = the total number of bits in all registers.

Since we are interested in how the complexity grows when input size gets increased,

our complexity analysis is based on the following functions, which are respectively called

a time complexity and a space complexity.

timeA(`) = max{ timeA(x) |x ∈ {0, 1}` }.
spaceA(`) = max{ spaceA(x) |x ∈ {0, 1}` }.

Remarks:

1. These complexity measures are called worst-case complexity measures. Clearly, the

worst-case criteria is not our only choice, and it is not always the best choice either.

For example, there are cases that the average-case analysis is more appropriate. But

the average-case analysis is usually complex, and it is even more difficult to provide

a simple and appropriate framework for studying the average-case complexity; so,

average-case complexity has not been studied until recently.

2. When we discuss space complexity smaller than `, the space used for input and

output registers is not counted. But in this case, input and output registers should

be used as read-only and write-only registers.

5

• Big-O notation

Definition 1. For any functions f and g from Z+ to Z+, we write f = O(g) if the

following holds for some constants c0 and n0.

∀n ≥ n0 [f(n) ≤ c0 · g(n)].

Remarks:

1. The big-O notation does not imply the asymptotic equivalence between two functions;

it just means that one function is asymptotically bounded from above by another

function. For example, we can write f = O(g) for f(n) = n and g(n) = 2n.

2. Important examples: (below p denotes any polynomial)

p(log n) = O((log n)k) = O(n) (for some k > 0).

p(n) = O(nk) = O(2n) (for some k > 0).

f(n) = O(g(n)) & g(n) = O(h(n)) =⇒ f(n) = O(h(n)).

• Basic complexity classes

Let t and s be any functions on natural numbers.

DTime(t) = { L : L is solvable by some A whose time complexity is O(t) }.
DSpace(s) = { L : L is solvable by some A whose space complexity is O(s) }.

These are basic complexity classes. The symbol “D” denotes that they are ordinary

determinstic complexity measures.

Functions used for t (resp., s) is called a time bound (resp., space bound).

Proposition 1. For any t1 and t2, and s1 and s2, we have

t1 = O(t2) =⇒ DTime(t1) ⊆ DTime(t2),

s1 = O(s2) =⇒ DSpace(s1) ⊆ DTime(s2).

Proof. For any problem L in DTime(t1), we can show that it is indeed in DTime(t2) as

follows. Thus, DTime(t1) ⊆ DTime(t2).

L ∈ DTime(t1) =⇒ some A solves L and timeA = O(t1)

=⇒ timeA = O(t2) =⇒ L ∈ DTime(t2).

6

3. Hierarchy Theorem

Consider any time bounds t1 and t2. If t1 << t2, we may naturally expect DTime(t1)
⊂
6=

DTime(t2). This intuition is provable — Hierarchy Theorem.

• Interpreter and its efficiency

Consider the following functions.

IsProgram(a) = [a is a correct code of some program with one input.]

eval(a, x) =





a(x), if IsProgram(a),

0, otherwise.

eval-in-time(a, x, t) =





a(x), if IsProgram(a) and a(x) halts in t steps,

0, otherwise.

Notations:

Recall that a program is encoded by a binary string a. By a(x), we mean the output (or,

in more general, the execution) of the program coded by a on x. For any integer t, we

use t to denote its unary notation, that is, t = 0t = 00 · · · 0︸ ︷︷ ︸
t

.

Remarks:

1. We may assume that there are programs computing these functions. Let us denote

them IsProg, eval, and evt. IsProg is a syntax checker, and eval is an interpreter.

2. We may assume that these programs are reasonably efficient. In particular, with

some constants cevt and devt, we assume that the following bound holds for any a, x,

and t ≥ |x|.

timeevt(a, x, t) ≤ cevt|a|t2 + devt.

spaceevt(a, x, t) ≤ cevt|a|t + devt.

Question?!

Q1. Why does evt need such running time? Why not O(|a|t) or even O(|a|+ t)?

7

• In-computability

Consider the problem of computing the following function, which we will refer as DIAG.

(Note that (a, x) is again encoded in {0, 1}∗. Thus, DIAG is an ordinary decision problem.)

diag((a, x)) = [eval(a, (a, x)) 6= 1].

Theorem 2. The problem DIAG is not solvable.

Proof. Enumerate of all program codes as a1, a2, ... Let αi be the output of ai on input

(ai, 0). That is,

αi = ai((ai, 0)) = eval(ai, (ai, 0)).

Hence, by definition, we have diag((ai, 0)) 6= αi; that is, each ai disagrees with diag on

(ai, 0). Therefore, no program ak computes diag .

• Time and space hierarchy theorems

Theorem 3. (Given first by Hartmanis and Stearns ’65)

Let t1 and t2 be any “reasonable” bounds such that t1 = O(t2).

(1) t2 6= O(t21) =⇒ DTime(t1)
⊂
6= DTime(t2).

(2) s2 6= O(s1) =⇒ DTime(s1)
⊂
6= DTime(s2).

Remarks:

1. Hartmanis and Stears proved a slightly different version of time hierarchy theorem.

The space hierarchy theorem was proved first by Hartmanis, Lewis, and Stearns.

2. The quality of the theorem depends on the efficiency of an interpreter. For example,

a linear time interpreter would yield a separation like the space hierarchy theorem.

3. Similar separation results hold for all reasonable complexity classes, in particular,

those we will define later.

8

• An example proof

To see how the theorem is proved, let us prove DTime(`) ⊂
6= DTime(`4).

For this, consider the following new version of diag . (Again we use DIAG for the

problem computing diag .)

diag((a, x)) = [eval-in-time(a, (a, x), t) 6= 1],

where ` = |(a, x)| and t = `2/|a|.

Then we can show that DIAG is (i) solvable in O(`4) time, but (ii) not solvable in

O(`). That is, it witnesses DTime(`4)−DTime(`) 6= ∅.
(i) DIAG ∈ DTime(`4).

We can simply use our interpreter evt to compute diag . Its computation time is bounded

as follows. (Let ` = |(a, x)|, the input length.)

time ≤ timeevt(a, x, t) + O(`2) ≤ cevt|a|t2 + devt + O(`2)

= cevt|a|
(

`2

|a|

)2

+ devt + O(`2) ≤ c`4 + d = O(`4).

(ii) DIAG 6∈ DTime(`).

Consider now the enumeration a1, a2, ... of all programs whose running time is O(`).

More precisely, we assume that the time complexity of each ai is bounded by ci` + di for

some ci and di.

For each ai (i.e., each ci, di, and |ai|), choose ni satisfying the following, where `i =

|(a, 0ni)|.

ci`i + di ≤ `2
i

|ai| .

Such ni certainly exists, because `2 6= O(`).

Now define αi = ai((ai, 0
ni)). Then we have (letting `i = |(ai, 0

ni) and ti = `2
i /|ai|)

αi = ai((ai, 0
ni))

= eval(ai, (ai, 0
ni))

= eval-in-time(ai, (ai, 0
ni), ti).

Hence, ai disagrees with diag on (ai, 0
ni), and therefore, no ak computes diag as before.

The last equality in the above holds from the following reason: From our choice of

ni, ti is larger than the time bound for ai(ai, 0
ni). Hence having time bound ti does not

affect the output of the eval.

9

4. Some Standard Complexity Classes

What follows is a summary of well known complexity classes. Here we explain classes in

the first two rows.

comp. model time space

deterministic P, DEXP DLOG, PSPACE

nondet. NP, co-NP, NEXP NLOG

randomized ZPP, RP, co-RP, BPP, PP RLOG

circuits AC0, NC, P/poly

Table 1: Popular complexity classes

• Deterministic complexity classes

Time classes:

P =
⋃

p:poly

DTime(p), E =
⋃

c>0

DTime(2c`), DEXP =
⋃

p:poly

DTime(2p(`)).

Space classes:

DLOG = DSpace(log `), PSPACE =
⋃

p:poly

DSpace(p).

Proposition 4.

(1) P ⊆ E ⊆ DEXP.

(2) DLOG ⊆ PSPACE.

Proposition 5. DLOG ⊆ P ⊆ PSPACE ⊆ DEXP.

Theorem 6.

(1) P ⊂
6= E ⊂

6= DEXP.

(2) DLOG ⊂
6= PSPACE.

Remarks:

1. DLOG (similarly, NLOG and RLOG) are often abbreviated as DL.

2. Relations in Proposition ?? are immediate from the definition. Proposition ?? is also

easy, considering the relation between time and space bounds. On the other hand,

the separations in Theorem ?? are from the hierarchy theorems.

3. We cannot prove, e.g., P ⊂
6= E, by simply showing DTime(`k) ⊂

6= DTime(2`). (For

example, [0, 1− (1/k)] ⊂6= [0, 1) for all k ≥ 1. But we have ∪k≥1[0, 1− (1/k)] = [0, 1).)

Question?!

Q2. Then how to prove P ⊂
6= E?

10

• The class NP

We define the class NP in the following way (which is my favorite definition ;−).

Definition 2. NP is the class of problems L for which we can define some polynomial qL

and some polynomial-time computable predicate RL with the following condition, which

we will refer as the NP-condition.

∀x ∈ {0, 1}∗ [x ∈ L ⇐⇒ ∃w : |w| ≤ qL(|x|) [RL(x,w)]].

Sets with this property are called NP sets. A string w like above is called a witness (of x

being in L), and RL is called a witness checking predicate.

Definition 3. Class co-NP is the class of problems whose compliment belong to NP.

Remarks:

1. Recall that we identify a decision problem L with a set of ‘yes’ instances. The

compliment of a problem L is the problem specified by the set compliment of L. That

is, the compliment of a problem L is the problem obtained by exchanging all ‘yes’ and

‘no’ answers of L.

2. The NP-condition is equivalent to the following one.

∀x ∈ {0, 1}∗

 x ∈ L =⇒ ∃w : |w| ≤ qL(|x|) [RL(x,w) = 1]

x 6∈ L =⇒ ∀w : |w| ≤ qL(|x|) [RL(x,w) = 0]




3. On the other hand, any co-NP problem L has qL and RL satisfying the following.

∀x ∈ {0, 1}∗

 x ∈ L =⇒ ∀w : |w| ≤ qL(|x|) [RL(x,w) = 1]

x 6∈ L =⇒ ∃w : |w| ≤ qL(|x|) [RL(x,w) = 0]




Example 1.

HAM = { G : G is a Hamiltonian graph }.
COR = { (G, k) : G is k-colorable }.
VC = { (G, k) : G has a vertex cover of size k }.
SAT = { F : F is a satisfiable (extended) Boolean formula }.
3SAT = { F : F is a satisfiable 3CNF formula }.
KNAP = { ((s1, ..., sn), (c1, ..., cn), B,K) :

∃U ⊆ {1, ..., n} [
∑

u∈U su ≤ B ∧ ∑
u∈U cu ≥ K] }.

SSUM = { ((a1, ..., an), B) : ∃U ⊆ {1, ..., n} [
∑

u∈U au = B] }.

11

Example 2.

EULER = { G : G is an Eulerian graph }.
LP = { (A,b, c, z) : ∃x ≥ 0 [Ax ≤ b ∧ cx ≥ z] }.
PRIME = { n : n is a prime number }.
COMPO = { n : n is a composite number }.
GI = { 〈G1, G2〉 : G1 is isomorphic to G2 }.

Remarks:

1. Examples in Example ?? are somewhat easier than those in Example ??. In fact,

EULER and LP are polynomial-time solvable. This does not contradicts the notion

of NP. Indeed, as shown below NP contains the class P.

2. In the definition of PRIME and COMPO, we assume the binary encoding of numbers.

PRIME and COMPO are also in co-NP. It is easy to see that PRIME is in co-NP and

COMPO is in NP. On the other hand, PRIME ∈ NP (similarly, COMPO ∈ co-NP)

is not so trivial.

3. Currently, we can locate GI in NP ∩ co-AM, where co-AM is a randomized version

of co-NP.

We can prove the following relationships.

Theorem 7.

(1) P ⊆ NP ∩ co-NP.

(2) NP ∪ co-NP ⊆ PSPACE (⊆ DEXP from Proposition ??).

Proof. The relation (1) is immediate from the definition, and (2) is proved by a standard

simulation. Here we show that NP ⊆ PSPACE.

Let L be any NP problem. Thus, we have some qL and RL that satisfy the NP-

condition for L; moreover, for RL, we may assume some program IsR computing RL in

polynomial time. Then we can design the following algorithm IsL for L, and it is easy to

see that it uses space bounded by O(sIsR(` + qL(`))), which is polynomial in `, where sIsR

is a polynomial space bound for IsR.

program IsL(input x);

q ← qL(|x|);
for each w ∈ {0, 1}≤q do {

if IsR(x, w) = 1 then halt(1);

}
halt(0);

end-program.

12

• A nondeterministic computation model

Although many researchers have been using our definition of NP these days, there is

an alternative definition of NP, which is useful (even necessary) for defining the other

related complexity classes. This definition of NP requires a new computation model for

nondeterministic computation.

We can give a nondeterministic computation model by extending our computation

device and its programming language. More specifically, we introduce if-statements of

the following type.

if guess = 0 then goto label1 else goto label2

The value of guess is either 0 or 1, and the following computation may differ depending

on this value. When the execution reaches to this statement, the machine executes both

possibilities in parallel.

A nondeterministic program is a program having this type of special if-statements. For

defining nondeterministic computation, we need to define the meaning (i.e., the semantics)

of such nondeterministic programs.

Let A be a nondeterministic program. For any input x to A, a computation path of

A on x is a computation of A on x following one sequence of guesses. We regard that A

outputs 1 on x (or more clearly, we say A accepts x) if A yields the output 1 on one of its

computation paths. Otherwise (i.e., if A on x has no such computation path), we regard

that A outputs 0 on x (or more clearly, A rejects x). We say that A solves a problem L if

its accepts x if and only if x ∈ L.

The time and space complexity can be measured in the same way as before. We

introduce the following basic complexity classes.

NTime(t) = { L : L is solvable by some nondet. A whose time complexity is O(t) }.
NSpace(s) = { L : L is solvable by some nondet. A whose space complexity is O(s) }.

Then we can define the following standard nondeterministic complexity classes, in-

cluding the class NP.

NP =
⋃

p:poly

NTime(p), NEXP =
⋃

p:poly

NTime(2p(`)).

NLOG = NSpace(log `), NPSPACE =
⋃

p:poly

NSpace(p).

Remarks:

Compliment classes such as co-NLOG and co-NEXP are defined as co-NP. For example,

co-NLOG is the class of problems whose compliment is in NLOG.

Theorem 8. The above definition of NP is equivalent to ours.

13

• Relation between det. and nondet. classes

Proposition 9. DLOG ⊆ NLOG, P ⊆ NP, and DEXP ⊆ NEXP.

Theorem 10. NLOG ∪ co-NLOG ⊆ P, and NP ∪ co-NP ⊆ PSPACE.

Theorem 11. (Savitch ’70) PSPACE = NPSPACE

Theorem 12. (Immermann ’88, Szelepcsényi ’87) NLOG = co-NLOG.

Remarks:

1. Proposition ?? is immediate noticing that the nondet. ccomputation model is an

extension of the deterministic one. (Thus, clearly, we have DTime(t) ⊆ NTime(t) and

DSpace(s) ⊆ NSpace(s).)

2. Proposition ?? can be proved easily like the proof of Theorem ??.

3. From Theorem ??, we do not need the complexity class NPSPACE. In more general,

it can be shown that NSpace(s) ⊆ DSpace(s2).

4. For deterministic classes such as P, we clearly have P = co-P; that is, deterministic

complexity classes are closed under taking compliment. On the other hand, it is

not clear at all whether nondeterministic classes also have this property. Theorem ??

states that NLOG do have this property. The theorem is proved by a quite interesting

census argument.

14

5. Reducibility and Completeness

• Polynomial-time many-one reducibility

Definition 4. For any decision problems (or, sets of strings) A and B, we say that A is

many-one reducible to B (abbrev. A ≤m B) if there exists a function h with the following

properties. (h itself is called a many-one reduction (abbrev. ≤m-reduction).)

(a) h is a total function from {0, 1}∗ to {0, 1}∗,
(b) ∀x ∈ {0, 1}∗ [x ∈ A ⇐⇒ h(x) ∈ B], and

(c) h is computable.

If furthermore, h is polynomial-time computable, then we say that A is polynomial-time

many-one reducible (abbrb. A ≤p
m B). The log-space many-one reducibility (abbrb. ≤log

m -

reducibility) and any other resource-bounded reducibilities are defined similarly.

Example 3. The following set CLIQUE is ≤p
m-reducible to IS. Conversely, IS is also ≤p

m

to CLIQUE. (In fact, they are ≤log
m -reducible each other.)

CLIQUE = { 〈G, k〉 : G has a clique of size k }.
IS = { 〈G, k〉 : G has an independent set of size k }.

The following is the key property of ≤p
m-reducibility.

Theorem 13.

(1) If A ≤p
m B and B is in P then A is also in P.

(2) The same relation holds by replacing P with its super-classes such as NP, co-NP,

DEXP, ..., etc.

Proof. We prove (1). Suppose that A ≤p
m B by a reduction h, and B is solved by a

program IsB. Then we can design polynomial-time program IsA solving A as follows.

program IsA(input x);

y ← h(x);

halt(IsB(y));

end-program.

Remarks:

There are various “polynomial-time” reducibility notions, with which we can prove the

above theorem (or, more precisely, the statement (1) of the theorem). The many-one

reducibility is in a sense the simplest. But we will mainly discuss with the many-one

reducibility, and “many-one” is usually omitted in the following.

15

From this theorem, we can discuss the relative hardness of two problems by using

≤p
m-reducibility. In fact, if A ≤p

m B, then we have B ∈ P =⇒ A ∈ P, B ∈ DEXP =⇒
A ∈ DEXP, etc.; hence, we may consider that B’s complexity bounds A’s complexity, or

A is no harder than B. That is,

A ≤p
m B intuitively

=⇒ A’s hardness ≤ B’s hardness

Suppose that both A ≤p
m B and B ≤p

m A hold. Then we write A ≡p
m B, meaning that

they are of the same hardness. Note also that ≤p
m-reducibility is a pre-order.

Theorem 14. If A ≤p
m B and B ≤p

m C, then A ≤p
m C.

WARNING! Although we can compare the hardness using the ≤p
m-reducibility, we

should remember that this comparison is w.r.t. the polynomial-time computability and

that the comparison finer than the polynomial-time computability cannot be made. For

such a comparison, we would need more restrictive reducibilities, such as ≤log
m -reducibility.

Example 4. There are some A and B such that A ≤p
m B and yet A 6∈ DTime(`100) and

B ∈ DTime(`2).

In fact, every L in P is ≤p
m-reducible to {0} by the following reduction hL.

hL(x) =





0, if x ∈ L, and

00, otherwise.

16

• Examples of polynomial-time reductions

Theorem 15. SAT is ≤p
m-reducible to 3SAT. (Since 3SAT ≤p

m SAT is clear, we have

3SAT ≡p
m SAT.)

Proof by Example. Consider the following formula F and explain how to reduce it to

an instance G for 3SAT problem.

F = ((X1 ∨X2) ≡ (X2 ⊕ (X1 ∧X3))).

First we define the following formula F ′ from F .

F ′ = (U1 ≡ (X1 ∨X2)) ∧ (U2 ≡ (X1 ∧X3))

∧(U3 ≡ (X2 ⊕ U2)) ∧ (U4 ≡ (U1 ≡ U3)) ∧ U4.

Though four new variables U1,..., U4 are introduced in F ′, we still have that

F is satisfiable (i.e., F ∈ SAT) ⇐⇒ F ′ is satisfiable (i.e., F ′ ∈ SAT).

Now we convert each clause of F ′ into 3CNF formula to make G. For example,

(U3 ≡ (X2 ⊕ U2)) can be converted as follows. (Consider when it becomes false.)

(U3 ≡ (X2 ⊕ U2)) = (U3 ∨X2 ∨ U2) ∧ (U3 ∨X2 ∨ U2)

∧ (U3 ∨X2 ∨ U2) ∧ (U3 ∨X2 ∨ U2).

Theorem 16. 3SAT ≤p
m VC.

Proof by Example. For any 3SAT formula F with n variables and m clauses, we can

define some GF and kF = n + 2m such that F ∈ 3SAT ⇐⇒ (GF , kF) ∈ VC.

To see how to define GF from F , consider the following 3CNF formula F .

F = (X1 ∨X2 ∨X3) ∧ (X1 ∨X2 ∨X3) ∧ (X1 ∨X2 ∨X3).

17

Theorem 17. VC ≤p
m SAT.

Proof by Idea. Let (G, k) be a given instance for VC problem. We assume that vertices

of G are indexed as 1, ..., n, and let E be the set of edges of G.

For this (G, k), consider the following formula F over X1, ..., Xn.

F =


 ∧

(i,j)∈E

(Xi ∨Xj)


 ∧ [X1 + X2 + · · ·+ Xn ≤ k].

Then it is easy to see that (G, k) ∈ VC if and only if F is satisfiable. Thus, the remaining

task is to express F as an ordinary Boolean formula.

Note that the addition can be computed by a logical circuit consisting of AND, OR,

and NOT gates. Thus, it is intuitively clear that the predicate comparek(x1, ..., xn) =

[x1 + · · ·+ xn ≤ k] can be computed by some circuit Ck.

Though similar, circuits are in general not formulas. But here we can use the previous

technique for proving SAT ≤p
m 3SAT to convert a circuit C to a formula F so that C is

satisfiable if and only if F is satisfiable. We use this technique and convert Ck to a formula

Fk, thereby converting F to some SAT instance.

By an idea similar to this, we can prove the following key result.

Theorem 18. (Cook ’71 and Levin ’73) Every L ∈ NP is ≤p
m-reducible to SAT.

Proof Idea. Let L be any problem in NP, and consider any instance x ∈ {0, 1}∗ for L.

We want to convert it to a Boolean formula Fx so that x ∈ L ⇐⇒ Fx is satisfiable.

Recall by definition that there are some polynomial qL and polynomial-time com-

putable predicate RL satisfying the NP-condition for L. In particular, the following holds

for our x. (For simplifying our argument, we assume that the witness length is exactly q

= qL(|x|).)

x ∈ L ⇐⇒ ∃w ∈ {0, 1}q [RL(x,w)].

Again intuitively, we may expect some logical circuit CL,x such that CL,x(w) = 1 if

and only if RL(x,w) holds. Note that CL,x has q input gates, each of which receives each

bit of a given witness w. Thus, we have x ∈ L if and only if CL,x is satisfiable (with some

inputs w1, ..., wq). Now we convert this CL,x to a Boolean formula as we did before, which

yields a formula Fx such that x ∈ L if and only if Fx is in SAT.

So far, we have not used the polynomial-time computability of RL. This is required

for constructing Fx in polynomial time. Since RL is polynomial-time computable, we can

show that the circuit CL,x is not so large; it consists of some polynomial number of AND,

OR, and NOT gates. This guarantees that Fx can be computed within some polynomial

time from x.

18

• NP-completeness and completeness notions

Definition 5. For any complexity class C, a set C is said C-complete (or more specifically,

≤p
m-complete in C) if

(a) ∀L ∈ C [L ≤p
m C], and

(b) C is in C.

Remarks:

1. From Theorem ?? (and the fact that SAT ∈ NP), we now know that SAT is NP-

complete.

2. A problem C satisfying the condition (a) is called C-hard. Intuitively, for example,

NP-hard problems are as hard as any NP-problem, and NP-complete problems are

those that are NP-hard and in NP. That is, NP-complete problems are problems that

are hardest in NP. (Again remember that the comparison is within the polynomial-

time computability.)

Proposition 19. Let C be any NP-complete problem. Then C ∈ P if and only if P =

NP.

Proposition 20. For any A and B, if A ≤p
m B and A is C-complete, then B is also

C-complete.

Thus, for showing NP-completeness of a given problem L, we need to show a reduction

from any known NP-complete problem C to L. For example, we have already proved the

NP-completeness of 3SAT and VC. The following NP-completeness results are proved in

this way.

Theorem 21. HAM, COR, KNAP, SSUM, CLIQUE, IS are all NP-complete.

The NP-completeness has been used to guarantee some sort of hardness to a given

NP problem. But for some cases, the completeness notion can be used to prove an actual

lower bound for a concrete problem.

Theorem 22. For any problem X, if X is DEXP-complete (or DEXP-hard), then X is

not polynomial-time solvable.

Proof. This follows from the fact that P ⊂
6= DEXP. Consider any problem L in DEXP−P.

Then L ≤p
m X, which implies X 6∈ P because L 6∈ P.

Example 5. We can show that the attribute grammar circularity test AG-CIRC, a prob-

lem of deciding whether a given attribute grammar has a circular definition, is DEXP-

complete. Thus, AG-CIRC cannot be solved in polynomial time.

Question?!

Q3. Is there any other application of reducibility and completeness notions?

19

6. Some Other Complexity Classes

• Relativized complexity classes

In our proof of Theorem ??, we designed an algorithm for some problem A based on

an assumed program for another problem B. Let us generalize this idea. Consider any

problem X, and assume that X is solvable magically in O(1) time. Then by using this

assumed program for X, we design an algorithm for a given problem Y . If some program

IsY solves Y in polynomial time by using the assumed program for X as a subroutine,

then we say that Y is polynomial-time solvable relative to X. In other words, IsY is

regarded as a program solving Y by asking queries to some oracle for X, an imaginary

mechanism that can answer the question y ∈ X? instantly for any given y.

For any problem X, we define a class PX to be the set of problems that are polynomial-

time solvable relative to X. Classes NPX , co-NPX , ... are defined similarly. These classes

are called relativized complexity classes.

Relativized classes are usually used to discuss important open questions such as P 6=
NP? in relativized worlds. But we can use this mechanism to define new complexity

classes. For any complexity class C, PC is the set of problems solvable in polynomial time

relative to some problem in C. We often consider the following complexity classes.

PNP ⊆ ZPPNP ⊆ NPNP ⊆ NPNPNP

and BPPNP

Remarks:

1. For discussing relativized complexity classes for space classes such as DLOG, NLOG,

PSPACE, etc, we usually use a computation model that has a special write-only

register for keeping a query to the oracle, and the space for this register is not counted.

On the other hand, we usually require that the query length is polynomially bounded.

2. It is easy to see that PP = P, Pco-NP = PNP, and NPco-NP = NPNP.

3. On the other hand, similar relations NP = PNP and NP = NPNP may not hold. On

the contrary, it has been believed that neither of them holds.

• Circuit complexity classes

Logical circuits (circuits in short) are used to investigate the running time of parallel

algorithms. They are also used as a combinatorial model of computation.

A circuit is a directed acyclic graph. Nodes of the graph, which are called gates, are

classified into four types. Nodes with no fan-in edge are input gates. The other nodes

are either AND-, OR-, or NOT-gates. Nodes with no fan-out edge are also called output

gates. NOT-gates have only one fan-in edge. On the other hand, AND- or OR-gates may

have any number of fan-in edge, but unless explicitly specified, we assume that AND- and

OR-gates have two fan-in edges.

20

Remarks:

1. A circuit C with ` input gates is used to express computation on input strings of

length `. Since each circuit can take care of strings of some fixed length, the whole

computation is represented by a family {C`}`≥0 of circuits, where each C` is a circuit

with ` input gates.

2. In general, we assume no regularity between the circuits in {C`}`≥0, and then there

may be no way to construct C` from `. Due to this, a family of circuits is generally

called a nonuniform computation model.

For the circuit model, we measure computational resource by “depth” and “size”.

The depth of a circuit C, which we denote as depth(C), is the length of the longest path

from an input gate to the output gate of C. The size of C, size(C), is the total number

of AND-, OR-, and NOT-gates.

Now we introduce circuit complexity classes. We start with the following basic com-

plexity classes.

SIZE(s) = { L : L is solvable by circuits of size ≤ O(s(`)) }.
D&S(d, s) = { L : L is solvable by circuits of depth ≤ O(d(`)) and of size ≤ O(s(`)) }.

It is intuitively clear that circuit depth corresponds to parallel running time. On the

other hand, circuit size corresponds to the combination of the time and space resources of

sequential algorithms. Here we introduce the following circuit classes. Roughly speaking,

NC is a class of problems solvable in poly. llogarithmic time by some reasonable parallel

machine.

NCk =
⋃

q:poly

D&S((log `)k, q(`)), NC =
⋃

k≥1

NCk.

Remarks:

Precisely speaking, in order to have the relation mentioned above between parallel running

time and circuit depth, we need to assume the log-space uniformity.

Some researchers have been trying to derive nontrivial lower bounds by investigating

combinatorial properties of resource bounded computation. For such investigation, we do

not need any uniformity, and nonuniform circuit complexity classes, complexity classes

defined by nonuniform families of circuits, are enough. The following nonuniform classes

have been considered for discussing such combinatorial lower bounds.

AC0 =
⋃

q:poly

D&S(1, q(`)), P/poly =
⋃

q:poly

SIZE(q(`)).

Remarks:

For defining AC classes (AC0 is one of them), we relax the condition on the number of

21

fan-in edges and allow AND and OR gates to have an arbitrary number of fan-in edges.

Otherwise, constant depth circuits would become very weak.

Let us discuss the relation between circuit complexity classes and ordinary complexity

classes defined before. The following relation is a key for showing inclusions.

Theorem 23. (Savage ’72) DTime(t) ∩DSpace(s) ⊆ D&S(t, t · s) ⊆ SIZE(t · s).
Corollary 24. P ⊆ P/poly.

For low level circuit classes, the following relation holds. (Here we assume the log-

space uniformity for all circuit classes.)

Theorem 25. AC0 ⊆ NC1 ⊆ DLOG ⊆ NLOG ⊆ NC2 ⊆ · · · ⊆ NC ⊆ P.

Theorem 26. (Furst, Saxe, and Sipser ’84) AC0 ⊂
6= NC1.

• Randomized complexity classes

Recent progress in algorithm and complexity theory has often been made by clever usage

of randomness, and randomness is now one of the important tools for designing efficient

algorithms. Here we introduce several complexity classes for randomized computation.

Example 6. To see that randomness is an effective tool, consider the following problem.

Matrix Multiplication Test (MULT-TEST)

Instance: Matrices A, B, and C of size n× n over some field.

Question: A×B
?
= C.

For our field, consider Zp for some prime number p. Although there is a matrix

multiplication algorithm running less than O(n3) steps, it seems difficult to achieve the

above test in O(n2) steps. On the other hand, randomness gives us the following simple

yet efficient algorithm. (Here we simply use n for input size, and count the number of

arithmetic operations of Zp for running time.)

program MTEST(input A, B, C);

choose r = (r1,...,rn) uniformly at random from {0, 1, ..., p− 1}n;
u ← A · (B · r); v ← C · r;
if u = v then halt(1) else halt(0);

end-program.

For a given input A, B, and C, it is easy to see that the algorithm yields 1 if A×B = C.

On the other hand, we can show that if A× B 6= C, then with probability ≥ 1/p, u and

v differs and the algorithm yields 0.

By a similar technique, we can test whether given two polynomials over a finite field

are equivalent.

22

For a randomized computation model, we can use almost the same machinery used

for nondeterministic computation. That is, we can describe any randomized algorithm by

using the following special if-statement that we introduced for nondeterministic compu-

tation.

if guess = 0 then goto label1 else goto label2

But here we give a different interpretation to this statement. When the execution

reaches to this statement, we assume that the machine flips a fair coin to determine the

value of guess. (Cf. For nondeterministic computation, we considered that the machine

executes two possibilities in parallel.)

As before, we call each possible execution a computation path. Notice that a computa-

tion path is uniquely determined if we fix the values of guess used during the execution;

furthermore, these choices can be specified as a binary string,i.e., a sequence of 0 and 1.

Thus, we often identify one computation path with a binary string that defines this com-

putation path. Intuitively, for executing a program with the above special if-statement,

a random binary sequence of enough length is first prepared, and then the program is

executed while using each bit of the random sequence when the value of guess is needed.

We allow a randomized program to yield different values on different computation

path, or even not to halt on some computation path. That is, the output A(x) of a

randomized program A on input x is a random variable. Since our target is a decision

problem, A(x) is either 0 or 1, but we allow A yields ? meaning ‘don’t know’. We say that

A solves a decision problem L if A(x) = 1 ⇐⇒ x ∈ L with probability > 1/2 for every x.

Below we consider only randomized programs that solve some decision problem.

Practically, a randomized program is useless unless its error probability is bounded.

Such randomized programs A are classified into the following three types.

Bounded error: (BP type)

x ∈ X =⇒ PrA{ A(x) 6= 1 } < ε,

x 6∈ X =⇒ PrA{ A(x) 6= 0 } < ε.

One sided error: (R type)

x ∈ X =⇒ PrA{ A(x) 6= 1 } < ε,

x 6∈ X =⇒ PrA{ A(x) 6= 0 } = 0.

One sided error: (co-R type)

x ∈ X =⇒ PrA{ A(x) 6= 1 } = 0,

x 6∈ X =⇒ PrA{ A(x) 6= 0 } < ε,

Zero error: (ZP type)

x ∈ X =⇒ PrA{ A(x) = 1 or ? } = 1,

x 6∈ X =⇒ PrA{ A(x) = 0 or ? } = 1.

23

Question?!

Q4. Let A be a randomized program of R type. Which answer of A do you believe?

Remarks:

1. The choice of ε is not essential in most cases because one can reduce error probability

by a constant factor by executing A a constant number of times.

2. The last condition is called “zero error” because one can always get the correct answer

by iterating A’s execution until a 1/0 answer is obtained.

Now we define complexity classes in Table 1.

PP = { L : L is solvable by some poly. time randomized program }.
BPP = { L : L is solvable by some poly. time BP type program }.
RP = { L : L is solvable by some poly. time R type program }.
co-RP = { L : L is solvable by some poly. time co-R type program }.
ZPP = { L : L is solvable by some poly. time ZPP type program }.
RLOG = { L : L is solvable by some log space RP type program }.

Proposition 27.

(1) ZPP = RP ∩ co-RP ⊆ RP ∪ co-RP ⊆ BPP ⊆ PP.

(2) RP ⊆ NP and co-RP ⊆ co-NP.

Theorem 28.

(1) P ⊆ ZPP, RP, co-RP, BPP, PP ⊆ PSPACE.

(2) NP, co-NP ⊆ PP.

Theorem 29. (Adleman ’78) BPP ⊆ P/poly.

Proof Idea. The relation is almost immediate from the following much stronger obser-

vation.

Let A be a BP type randomized program whose time complexity is polynomially

bounded. Since A halts within polynomial time, we only need, for the random seed for A,

a random binary sequence of some polynomial length.

From our intuitive understanding of randomized computation, for each x ∈ {0, 1}`,
there are, say, 2/3 of random binary sequences that are “good”, i.e., that have A(x) to

yield the correct answer. Notice that the set of “good” random binary sequences differs

depending on x. The key observation is that we can construct a new algorithm AA from

A, for which 2/3 of random binary sequences are “good” for all input x ∈ {0, 1}`. That

is, if we select a binary sequence randomly, then with high probability, it is universally

good for AA.

Our circuit is designed for simulating AA with one of these universally good binary

sequence that is hard wired (or encoded) in the circuit.

24

