
Fundamentals of MCS: CS, 2015.10.26

Lecture 3: Algorithms and Comp. Complexity

— Discovery of P 6= NP Conjecture

An algorithm is a way to describe computation for achieving a given task, in a way

more flexible and abstract than actual computer programs. For achieving the same com-

putational task, we may use various different algorithms, and clearly, there should be

some difference between their “efficiency.” Good algorithms (most typically, efficient

algorithms) are crucial for designing good computer software systems, and thus, investi-

gating the design and analysis of algorithms and understanding their limits are important

subjects of foundations of computing theory. Furthermore, many researchers (not only

computer scientists) have started realizing that an approach from view points of algo-

rithms (which is sometimes called “algorithmic view” or “computational view”) provides

us with new understanding of our world.

A field studying algorithms formally is recently called Algorithm Theory, which includes

(under my personal interpretation) a field called Computational Complexity Theory. In

our lecture, we discuss the famous P 6= NP conjecture as a typical topic in Algorithm

Theory.

An Important Message from O.W: Today I would like to explain things

so that you can appreciate the current framework of investigating algorithms,

and for this purpose, I will explain a little bit some hisotry of the discovery of

the P 6= NP conjecture. Hope that I can also have you realize that algorithms

can be used to understand computation.

1 Basic Definitions for Computational Complexity

Definition 1. A problem (or more specifically, computational problem) is a task for

computing a given function f : D → R.

Remark. f may be a multi-valued function, a function with more than one values; for

such f , the task is to compute one of those values.

Sets D and R are called respectively domain and range. Each element of D is called

a (problem) instance. We assume that all objects for computation are encoded in binary

strings, i.e., elements of {0, 1}∗. Thus, both D and R are subsets of {0, 1}∗. Problems

with R = {0, 1} are called decision problems, where 1 means “yes” (or “accept”) and 0

means “no” (or “reject”). We usually assume that D = {0, 1}∗ for decision problems.

The length (i.e., the number of bits) of each instance is called its size.

An Important Message from O.W: This is the way that we have developed

to capture computational tasks for discussing “efficiency” of algorithms. The

important point here is that each problem is not for computing something

for one instance or some finite set of instances, although, our actual task

1



in practice is sometimes to get a result on one particular data. Founders

of Algorithm Theory might have considered that it would be more useful to

design algorithms for solving infinite number of instances, and it turned out

that this is the right/wise choice, in particular, for our computerized society.

Example 1. A graph is a combinatorial object consisting of vertices and edges. A graph

G is specfied a pair (V,E), where V is the set of its vertices and E is the set of its edges.

We may assume that a graph is encoded in {0, 1}∗.
For any graph G = (V,E), its (vertex) coloring is a way to give a color to each vertex in

V ; such a coloring is called proper if no pair of adjacent vertices is given the same color.

(We say that two vertices are adjacent if they are connected by an edge.)

Min. Coloring Problem (abbrev. Min.COLOR)

Instance: A graph G = (V,E).

Question: How many colors are needed for proper coloring of G?

Coloring Problem (abbrev. COLOR)

Instance: A graph G = (V,E) and an integer k.

Question: Is there any proper coloring of G using at most k colors?

3-Coloring Problem, Search Version (abbrev. Search.3-COLOR)

Instance: A graph G = (V,E).

Question: Find a proper coloring of G that uses at most k colors.

Remark. The domain is the set of graphs with proper 3-coloring.

3-Coloring Problem (abbrev. 3-COLOR)

Instance: A graph G = (V,E).

Question: Is there any proper coloring of G using at most 3 colors?

By the way, we may define 2-Coloring problem similarly. tu

Example 2. Let G = (V,E) be any graph. A cycle of G is a tour traversing vertices

using edges that starts some vertex in V and ends at this vertex. A Hamilton cycle of

G is a cycle that visits all vertices of V exactly once (except for the start vertex that is

visited twice). An Euler cycle of G is a cycle that visits all edges of E exactly once.

Hamilton Cycle Problem (abbrev. HAM)

Instance: A graph G = (V,E).

Question: Is there any Hamilton cycle in G?

Euler Cycle Problem (abbrev. EULER)

Instance: A graph G = (V,E).

Question: Is there any Euler cycle in G? tu

2



Example 3.

Primarity Test (abbrev. PRIME)

Instance: An integer n.

Question: Is it a prime number?

Factorization (abbrev. FACT)

Instance: An integer n.

Question: Compute its prime factorization.

An important point to note here is that the size of a given input instance n is measured

by its bit length. That is, the size of n is approximately log2 n. tu

We would usually state an algorithm by a “pseudo program”, that is, say, a C program

like description but in less precise way. For discussing the efficiency of algorithms, we

usually1 consider a pseudo program that is concrete/detail enough so that we may assume

that each line can be executed in a real computer by some constant number of instructions.

Then we roughly consider the execution of each line as “one step” and define the time

complexity of a given algorithm A as follows.

Definition 2. Let A be an algorithm for some problem stated by a pseudo code that is

precise enough. For any instance x, define timeA(x) by

timeA(x) = the number of executed steps until A halts on x.

Then the time complexity of A is a function on nonnegative integers that is defined as

follows for each ` ≥ 0.

timeA(`) = max
{
timeA(x) |x ∈ {0, 1}`

}
.

This complexity measures is called a worst-case complexity measure. Clearly, the worst-

case criteria is not our only choice, and it is not always the best choice either. For

example, there are cases that the average-case analysis is more appropriate. But the

average-case analysis is usually complex, and it is even more difficult to provide a simple

and appropriate framework for studying the average-case complexity; so, average-case

complexity has not been studied until recently.

Since algorithms are for infinite instances, each time complexity is not a number but a

function on nonnegative integers. Thus, we need some way to compare two functions f

and g and determine which one is larger. For this, the following asymptotic comparison

was introduced.

1Of course, for discussing formally/precisely/in detail, we need to consider some precise model of

computation and define “one step” precisely w.r.t. this model. Most typically, Turing machine model

is used for such a computation model; but you can use any favorite model so long as it is precise and

somewhat consistent with real computers.

3



Definition 3. For any functions f and g from Z+ to Z+, we write f = O(g) if the

following holds for some constants c0 and n0.

∀n ≥ n0 [ f(n) ≤ c0 · g(n) ].

Remark. The big-O notation does not imply the asymptotic equivalence between two

functions; it just means that one function is asymptotically bounded from above by another

function. For example, we can write f = O(g) for f(n) = n and g(n) = 2n.

Now we define basic complexity classes2.

Definition 4. For any function t(`) on nonnegative integers, a complexity class Time(t(`))

is defined by

Time(t(`)) =
{
f : f is computable by some A such that timeA(`) = O(t(`))

}
.

Then define classes P and EXP as follows:

P =
∪

p(`):polynomial

Time(p(`)), EXP =
∪

p(`):polynomial

Time(2p(`)).

One of the fundamental theorems of Complexity Theory is to show the following rather

trivial fact: the more time we can use, the more difficult problems we can solve; but its

proof is not trivial at all!

Theorem 1. Let t1(`) and t2(`) be any functions on nonnegative integers. If t2 >> t1 (for

example, t1(`) = O(t1(`) but t2(`) 6= O(t1(`)
2)), then we have Time(t2(`))

⊂
6= Time(t2(`)).

2 Class NP and the P 6= NP Conjecture

Class NP is the class of problems such that checking the correctness of answers is not so

difficult. This notion is defined formally as follows.

Definition 5. A problem f : D → R is NP search problem if we have some polynomial-

time computable predicate3 R such that for any instance x ∈ D and any y ∈ R, we

have

y = f(x) ⇐⇒ R(x, y) = 1.

Class NP is the class of NP search problems.

Remark. Usually we define NP as the class of decision problems that determine whether

give an instance x ∈ {0, 1}∗ has a solution in the corresponding NP search problem.

2Usually these complexity classes are defined for decision problems. But here we relax this condition

and consider any computational problems

3A predicate is a function whose value is either 1 (“yes”) or 0 (“no”).

4



Example 4. First consider the problems HAM and EULER of Example 2. Let DHAM

and DEULER be sets of instances having a Hamilton cycle and an Euler cycle respectively.

Let fHAM : DHAM → R and fEULER : DEULER → R be multi-valued functions mapping an

instance graph to its Hamilton and Euler cycle respectively. Then it is easy to show that

these functions define NP search problems. Then HAM and EULER are the corresponding

decision problems in NP.

Similarly, it is easy to see that Search.3-COLOR is NP search problem, and 3-COLOR

is its decision version that is in NP. Also COLOR (and its search version) is in NP. Note,

on the other hand, that Min.COLOR does not seem to satisfy the condition for NP search

problem; in fact, it is believed that Min.COLOR is not in NP. tu

It is easy to see the following relations. Note that the condition for f ∈ NP is a

generalization of the condition of f ∈ P; then the first relation P⊆ NP follows. The second

relation is from the fact that every problem f ∈ NP is solvable by some exponential-time

algorithm.

Theorem 2.

P ⊆ NP ⊆ EXP.

It has been believed that some problem in NP has no polynomial-time algorithm, that

is, they are not in P and we have P
⊂
6= NP. This is the P 6= NP cojecture.

An Important Message from O.W: Obviously once both P and NP are

defined, one can naturally ask P = NP or not; that is, everyone can ask the

P 6= NP conjecture easily. But I would like to claim that the P 6= NP cojecture

was discovered by Cook and Karp (also independently by Levin in U.S.S.R.)

because the importance of the class NP and the P 6= NP cojecture would not

have been realized unless they showed the key results stated below.

Theorem 3.

(1) SAT is in P ⇐⇒ NP ⊆ P (Cook, 1971; Levin, 1973).

(2) 3COLOR is in P (resp., HAM is in P, etc) ⇐⇒ NP ⊆ P (Karp, 1972; Levin, 1973).

These results are also important because some novel method for analyzing computional

properties has been introduced for proving these results. They proved that, e.g., SAT

and 3COLOR have similar computational difficulty by developing algorithms for relating

their difficulty. Here we see two quite simple examples of such algorithmic analysis.

It seems that the problem Min.COLOR is not in NP (and maybe slightly more difficult).

But yet we can show that if COLOR is polynomial-time solvable, then Min.COLOR is

also. That is, the following theorem.

Theorem 4. COLOR is in P =⇒ Min.COLOR is in P.

Proof. To show this, we design an algorithm B that solves Min.COLOR by using (any

algorithm) C for the problem COLOR as a subroutine. We design B so that it runs in

5



polynomial-time if we ignore the computational cost of running C. (We skip here for the

description of the algorithm B, which will be explained on the blackboard in the class.)

Now with this B we can show the theorem. This is because if C is indeed a polynomial-

time algorithm, then the whole computation of B (including the execution of C) can be

done in polynomial-time.

By a similar algorithmic approach, we can show that the search version of the problem

HAM is no harder than HAM itself.

Theorem 5. HAM is in P =⇒ fHAM is in P.

These results (and most notably the above results of Cook, Levin, and Karp) show that

there are some other ways to use algorithms besides programming; algorithms can be used

to relate problems/tasks computationally for understanding their similarity/difference

from computational view points.

Homework assignment from this lecture

Solve one of the following problems.

Q2.1. Knowing how to compare algorithms by using complexity measures would be im-

portant even though you are not designing algorithms by yourselves. At least you

had better understand related notions and notations sufficient enough to solve the

following questions.

(1) Is it always appropriate to define a given computational task as a task of computing

some function? Suppose you want to design a Chess-software, a software that plays

a chess with human. For designing its core algorithm, would it be possible to specify

the required task by some function (or a set of functions)?

(2) Prof. W uses his algorithm A to analyze his experimental data, which is crucial for

his research project. But his assistant K analyzed this algorithm and showed that

it needs timeA(`) = 4 · 20.3` · 10−2 seconds for analyzing `Mbyte data. This is not

efficient. So he spent some months to develop a new algorithm B whose running

time on `Mbyte data is timeB(`) = 4000`2 · 10−2 seconds. Prof. W is unhappy that

his assistant spends so long time only for algorithm design; in particular, there is

no so much difference for the size of data (approximately 74Mbytes) that his group

needs to analyze currently. Give at least two technical explanations for supporting

the effort of assistant K. We may assume that for both programs, their running

time depend only on input data size. (Hint. The amount of data his group needs to

analyze is growing. In fact, Prof. W is planning to buy a new computer (10 times

faster than the current one) for preparing this data increase.)

Q2.2. Show that NP ⊆ EXP holds. Give some example of NP problem that does not

seem to belong Time
(
2`

2 )
.

6


