
Fundamentals of MCS: CS, 2015.10.19

Lecture 2: Formal Language Theory

— Regular Language
Formal Language Theory is one of the important fields on

In CS some object ap-

pears in different ways

like Kannon who ap-

pears in several differ-

ent ways in front of

Human beings

foundations of computing theory. This field were developed

in the early stage of computer science, and most of the key

results were obtained during that time. Thus, they are not

new, but they should be learned as liberal arts for science

and engineering students of this computer age.

In our lecture, we study “regular language” (also called

“regular set”), the most fundamental concept in Formal Lan-

guage Theory. It also provides us with a good example illus-

trating different ways to understand some objects that have

been often used in computer science.

For more details and for further reading on Formal Lan-

guage Theory, please refer to some standard textbooks [1].

An Important Message from O.W: For those who are not studying CS

as a major subject, one book covering many subjects on theoretical computer

science would be better to read instead of reading text books on some specific

topics. For such books, I would recommend two textbooks [3, 5]. You can find

some chapters on Formal Language Theory.)

1 Definitions of Regular Languages

We show three different definitions of Regular Languages. We begin with some very basic

notions and notations of Formal Language Theory.

- alphabet is a finite set of symbols, which is usually fixed in each context.

notation: Σ is often used to denote a given alphabet.

examples: Σ = {a, b, . . . , z}, Σ = {0, 1}.

- string is a sequence of finite number of symbols of Σ.

notation: use here u, v, w, . . . to denote strings.

by |u| we mean the length of string u.

examples: x = abcbbc, y = 010010.

null string (or, empty string) is the length 0 string.

notation: use here ε to denote the null string.

- language is a set of strings.

- concatenation is to connect two strings to make one string.

notation: we use here · for the concatenation operator,

which is often omitted though.

examples: for x = ab, y = cd, x · y = abcd

1

We extend the concatenation operator for languages. For any pair of languages S and

T , define S · T by

S · T =
{
u · v : u ∈ S, v ∈ T

}
.

Concatenating one language (for some fixed number of times) is expressed simply by a

power notation. For any language S, define S0 = { ε }, and for any integer t ≥ 0, define

St = S · St−1. Then for any language S we by S∗ we mean

S∗ =
∪
i≥0

Si.

This is just a set of strings obtained by concatenating strings in S for i ≥ 0 times. The

operator ∗ is called Kleene closure or star operator.

Now we state three different definitions for the notion of “regular language.” Below we

fix our alphabet Σ to either {a, b, c} or {0, 1}.

Definition 1. A set S of strings is regular if it satisfies one of the following conditions:

(1) S is ∅, {ε}, or {e} for some e ∈ Σ;

(2) S = U ∪ V for some regular languages U and V ;

(3) S = U · V for some regular languages U and V ; and

(4) S = U∗ for some regular language U .

This immediately gives the following way to express regular languages.

Definition 2. A regular expression and its interpretation L is defined as follows:

(1) Symbols ∅ and ε, and each element e of Σ is respectively a regular expression, where

L(∅) = ∅, L(ε) = {ε}, and L(e) = {e};
(2) For any regular expressions r and s, r + s is a regular expression, where L(r + s) =

L(r) ∪ L(s);

(3) For any regular expressions r and s, r · s is a regular expression, where L(r · s) =

L(r) · L(s); and
(4) For any regular expression r, r∗ is a regular expression, where L(r∗) = L(r)∗.

Example 1.
(a+ b+ c)∗ a(ba)∗a+ b(ab)∗b

(0+ 1)∗1(0+ 1)(0+ 1)(0+ 1)
tu

Next we define regular languages by certain methods to generate/specify languages —

grammar. A grammar is a way to specify a language by showing a way to derive (i.e.,

generate) each sentence (i.e., string) of the language. Here we formally express this notion.

Definition 3. A regular grammar G is a triple (S,N, P), where N is a set of nontermi-

nals, S ∈ N is a start nonterminal, and P is a set of production rules that are one of the

following types:

(1) A → ε for some A ∈ N ;

(2) A → e for some A ∈ N and e ∈ Σ; and

(3) A → B for some A,B ∈ N , or A → eB for some A,B ∈ N and e ∈ Σ.

Remark. We assume that P has at least one production rule of the form S → · · · .

2

Consider any regular grammar G = (S,N, P). Each production rule of P means a rule

to replace the left hand side nonterminal by the right hand side: for example, A → eB

means to replace A with eB. A derivation is to apply this type of replacements for

some number of times starting from the initial nonterminal S ending with some string

w (without any nonterminal). We write S →∗ w if w is derived (or generated) by some

derivation. Let L(G) denote the set of strings w such that S →∗ w holds, and L(G)

is called the language generated/specified by grammar G. Then we may define “regular

language” as follows: a language is regular if it is generated by some regular grammar.

Example 2. Consider G1 = (S, {S,A,B,C}, P), where P consists of the following

rules:
S → A, S → B, S → C, S → ε

A → aS, B → bS, C → cS

Consider G2 = (S, {S,X, Y, }, P), with following (extended) production rules:

S → aX, S → bY

X → abX, X → ε, Y → baY, Y → ε

tu

Finally we give a way to define “recognition method” for regular languages. In general,

a “recognition method” of a language L is a way to determine whether a given w ∈ L.

We introduce here to “finite automata” for describing recognition methods for regular

languages.

Definition 4. A (deterministic) finite automaton (in short, DFA) is a 4-tuple M =

(Q, δ, q0, F), where Q is a finite set of states, q0 ∈ Q is an initial state, F ⊆ Q is a set of

final states, and δ: Q× Σ → Q is a (state) transition function.

Remark. We would usually use “nondeterministic” finite automata, which is essentially

the same computational power as DFA but quite useful for designing a method for recog-

nizing a regular language specified by either a regular expression or a regular grammar.

But in this lecture we omit this generalized automata.

Example 3. It would be much easier to explain/understand if we state DFA by a figure.

Here we give two examples. One is for recognizing a(ba)∗a + b(ab)∗b, and the other is

for recognizing the set (denoted by Lbin3) of binary strings that corresponds to natural

numbers divisible by 3. (Please copy the figure below that I draw on the black board.)

tu

3

We explain how to use DFA for language recognition. Consider any DFAM = (Q, q0, δ, F)

that is designed for recognizing some language L. The task of M is, for a given string w

(i.e., any element of Σ∗), to determine whether w ∈ L or not. For this, we first introduce a

way to define an extended state transition function δ∗. By using δ, we define δ∗ inductively

as follows: For any q ∈ Q, δ∗(q, ε) is defined by δ∗(q, ε) = q, and for any q ∈ Q, e ∈ Σ,

and w ∈ Σ∗, define δ∗(q, ew) by

δ∗(q, ew) = δ∗(δ(q, e), w).

Then for given w, we say that M accepts w (meaning “determine that w ∈ L”) if

δ∗(q0, w) ∈ F . Let L(M) denote the set of strings accepted by M ; that is, L(M) is

the language that is recognized by M . Finally, we give the third definition of “regular

language”: A language L is regular if it is recognized by some DFA.

An Important Message from O.W: I think that this third definition is

very characteristics in computer science. In CS, we always try to obtain some

“computational” method that can be implemented on computers.

2 Derivatives of Regular Languages

Let us see yet another view of regular languages. This view is provided by the following

“derivative” notion introduced by Brzozowski [2]. (Some of the following explanation is

from [4], but note that symbol ≈ has different meaning in [4].) Here again we fix our

alphabet Σ to either {a, b, c} or {0, 1}.

Definition 5. For any language (i.e., set of strings) L and any u ∈ Σ∗, define the u-

derivative of L by

∂uL = { v : uv ∈ L }.

Definition 6. For any language L, and define equivalence1 relation ≈L on Σ as follows:

for any u and v in Σ∗,

u ≈L v ⇐⇒ ∂uL = ∂vL.

Then we can give yet another definition of “regular language”: A language L is regular

if Σ∗ is divided into a finite number of equivalence classes by ≈L.

Example 4. Let us consider the set Lbin3 of Example 3. For analyzing equivalence

classes such as Σ∗/≈Lbin3
, Fact 1 below is useful. tu

Fact 1. For any language L, we have ∂εL = L, and for any e ∈ Σ and any w ∈ Σ∗, we

have ∂ewL = ∂w(∂eL).

1An equivalence relation is a binary relation satisfying (i) reflexibility, (ii) symmetry, and (iii) transi-

tivity.

4

We can use this derivative operator for deriving DFA recognizing a language expressed

by a regular expression. Below is a set of key rules for this derivation. (We use r and s

to denote regular expressions.)

e-derivative calculation rule (where e ∈ Σ)

∂eε = ∅
∂e∅ = ∅

∂ea =

{
ε, if a = e, and

∅, otherwise

∂e(r + s) = ∂er + ∂es

∂e(r · s) =

{
(∂er) · s+ ∂es, if ε ∈ L(r), and

(∂er) · s, otherwise

∂e(r
∗) = (∂er) · r∗

You may want to try this set of rules with some regular expressions. Then you will

soon see what sort of equivalence classes that a given regular expression defines, and how

these equivalence classes can be used to design your target DFA. I would like to leave

such examination to you.

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman, Compilers: Principles, Techniques, and Tools,

Addison Wesley, 1986.

[2] J.A. Brzozowski, Derivatives of regular expressions, J. ACM 11(4): 481–494, 1964.

[3] A. Maruoka, Concise Guide to Computation Theory, Springer, 2010.

[4] S. Owens, J. Reppy, and A. Turon, J. Functional Programming 19 (2): 173–190,

2009.

[5] M. Sipser, Introduction to the Theory of Computation, PWS Publishing Company,

2012 (3rd Edition is available).

Homework assignment from this lecture2

Q1.1. Prove that a language L is regular if and only if Σ∗ is divided into a finite number

of equivalence classes by ≈L. Then explain with some example why the number of

equivalence classes cannot be finite for non-regular languages; estimate the number

of equivalence classes in terms of the string length. (You may use any one of the

first three definitions of regular language; but maybe the definition by DFA would be

much easier.)

2The requirement of Part I (for grading) is to submit a report for two of three homework assignments

given at Lecture 2, Lecture 3, and Lecture 5 by the end of November. You may use Japanese to give

your answer.

5

Q1.2. Explain some example of using regular languges (and their expressions) to cap-

ture/formulate some computational task. (Something unrelated to string processing

such as string matching.)

6

