
Nash Equilibrium and Mixed Strategies (April 23)

I. Review

• Iterated removal of strictly dominated strategies leads to a unique outcome for some

games but not for all games.

• The same could not be said for iterated removal of weakly dominated strategies.

Sometimes, the order in which weakly dominated strategies are deleted mattered.

• Iterated removal of strategies that are never best responses – rationalizable strate-

gies.

• The concepts of strict domination, weak domination, and never best response never

considered the rationality of the other players’ strategies in the definition itself.

• Today: a concept that can be used in all games but now involves the interaction

among players

II. Definition of Nash Equilibrium

A strategy combination s∗ = (s∗1, s
∗
2, · · · , s∗n) is a Nash equilibrium if for each

i ∈ N and si ∈ Si

ui(s
∗
i , s

∗
−i) ≥ ui(si, s

∗
−i)

• Interpretations:1

– One interpretation: Once s∗ = (s∗1, s
∗
2, · · · , s∗n) is reached, no player i ∈ N can

obtain a higher payoff by changing his/her strategy to si. → self-enforcing

– Another interpretation: A Nash equilibrium is an outcome reached through

rational reasoning by the players. The rationality required to make sense of

this interpretation is not clear but should be stronger than what was assumed

in the last lecture. (As is shown later in Fact 1, for each i ∈ N and Nash

equilibrium s∗, s∗i cannot be strictly dominated.)

– Necessary condition: If theory were to determine a unique outcome for a game

that is to be reached, it should be a Nash equilibrium.

1The discussion below is partially taken from Mas-Colell, Whinston, and Green (1995).
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– However, there is no argument as to how a Nash equilibrium is reached. More-

over, a paper by Hart and Mas-Colell (2003) argues that there is no intuitive

adjustment process that leads to a Nash equilibrium in general. This does not

rule out the possibility for the result to hold under certain classes of games –

potential games, supermodular games.

• For each i ∈ N , define the best response correspondence βi in the following

way:

βi(s−i) = {si ∈ Si : ui(si, s−i) ≥ ui(s
′
i, s−i) ∀s′i ∈ Si}

• When for each s−i, βi(s−i) is a singleton, βi is sometimes called the best response

function.

An equivalent definition: s∗ = (s∗1, s
∗
2, · · · , s∗n) is a Nash equilibrium if

for each i ∈ N , s∗i ∈ βi(s
∗
−i)

III. Finding Nash Equilibria – Review

• Prisoner’s dilemma:

1 \ 2 C D

C −2,−2 −6, 0

D 0,−6 −5,−5

Note: The underline indicates the best response choices for each player. For exam-

ple, the underlined “0” in the entry (D,C) indicates that for player 1, choosing D

is a best response to player 2 choosing C. The strategy combination for which

both payoffs are underlined constitutes a Nash equilibrium. In this example, (D,D)

is the only Nash equilibrium.

• Matching coins: Each player chooses heads (H) or tails (T) of a two-sided coin

simultaneously. If the sides match – either both players choose H or both player

choose T – player 1 receives a payoff of −1, while player 2 receives a payoff of 1. If

they do not match, player 1 receives a payoff of 1, while player 2 receives a payoff

of −1.

1 \ 2 H T

H −1, 1 1,−1

T 1,−1 −1, 1
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Note that this game has no Nash equilibrium.

• Cournot duopoly: (simplified version and change in notation – changes are in red)

– N = {1, 2} (2 players who are called in this setting as firm 1 and firm 2)

– S1 = S2 = [0,∞): production level of each firm (strategy sets can be infinite

and unbounded)

u1(s1, s2) = p(s1, s2)s1 − cs1

u2(s1, s2) = p(s1, s2)s2 − cs2

where

∗ p(s1, s2)= max{0, a−(s1+s2)} denotes the inverse demand function giving

the price of the output when firm 1 produces the amount s1 and firm 2

produces the amount s2.

∗ c: (common) cost per unit production for both firm 1 and firm 2. Assume

that a > c.

– Given s2, firm 1’s best response function is given by

β1(s2) =

a−s2−c
2 if a− s2 − c > 0

0 if a− s2 − c ≤ 0

– Given s1, firm 2’s best response function is given by

β2(s1) =

a−s1−c
2 if a− s1 − c > 0

0 if a− s1 − c ≤ 0

– (s∗1, s
∗
2) is a Nash equilibrium if and only if

β1(s
∗
2) = s∗1 and β2(s

∗
1) = s∗2

– Solving the pair of equations yields

s∗1 = s∗2 =
a− c

3

– There is an adjustment process that leads to the Nash equilibrium, called the

Cournot tatonnement process.

IV. Properties
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• The fact below summarizes the relationship between Nash equilibrium and the

iterated removal of strictly dominated strategies.

Fact 1.

1. Let s∗ be a Nash equilibrium. Then, for each i ∈ N , s∗i is rationalizable, where

rationalizability is defined in terms of Bernheim (1984) and Pearce (1984).

2. Let s∗ be a Nash equilibrium. Then, for any i ∈ N , s∗i cannot be deleted in the

iterated removal of strictly dominated strategies.

3. Suppose that Si is finite for each i ∈ N . If for each i ∈ N , s∗i is the only strategy

that remains after the iterated removal of strictly dominated strategies, then

s∗ = (s∗1, s
∗
2, · · · , s∗n) is the unique Nash equilibrium of the game. That is, for

dominance solvable games, the iterated removal of strictly dominated strategies

yields the unique Nash equilibrium.

• The second part of the above result does not hold when “strictly dominated” is

replaced by “weakly dominated.”

• The second part does not hold for games that are not dominance solvable (for

example, the chicken game).

V. Mixed Strategies and Existence Theorem

From this section, suppose that Si be a finite set for each i ∈ N .

• Each element in Si is called a pure strategy of player i.

• A mixed strategy of player i is a function σi : Si → R such that

– σi(si) ≥ 0 for all si ∈ Si

–
∑

si∈Si
σi(si) = 1

where σi(si) indicates the probability that player i plays the strategy si.

• ∆(Si): the set of mixed strategies of player i ∈ N . (to be explained in further

detail)

• Let σ = (σ1, σ2, · · · , σn) ∈
∏

i∈N ∆(Si). Under the assumption that players choose

their mixed strategies independently, the probability that player 1 plays strategy
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s1, player 2 plays s2, · · · , player n plays sn is given by

σ1(s1)σ2(s2) · · ·σn(sn) =
∏
i∈N

σi(si)

• The expected payoff when each player i chooses a mixed strategy σi is given by

πi(σ1, σ2, · · · , σn) =
∑

(s1,s2,··· ,sn)∈S

(∏
i∈N

σi(si)

)
ui(s1, s2, · · · , sn)

Recall S :=
∏

i∈N Si.

• (N, (∆(Si))i∈N , (πi)i∈N ) defines a strategic form game and is called the mixed

extension of the game G = (N, (Si)i∈N , (ui)i∈N ).

• Nash equilibrium and concepts of strict domination can be defined for the mixed

extension of the game in the same way.

– σ∗ = (σ∗
1, σ

∗
2, · · · , σ∗

n) ∈
∏

i∈N ∆(Si) is a Nash equilibrium in mixed

strategies if for all i ∈ N and σi ∈ ∆(Si),

πi(σ
∗
i , σ

∗
−i) ≥ πi(σi, σ

∗
−i)

– A mixed strategy σi ∈ ∆(Si) is strictly dominated (version 1) by another

mixed strategy σ′
i ∈ ∆(Si) if for all σ−i ∈

∏
j ̸=i∆(Sj),

πi(σi, σ−i) < πi(σ
′
i, σ−i)

• For a mixed extension of a finite game in strategic form, there always exists a Nash

equilibrium in mixed strategies.

Theorem. Let G = (N, (Si)i∈N , (ui)i∈N ) be a game in strategic form where for each

i ∈ N , Si is a finite set. Let G′ = (N,∆(Si)i∈N , (πi)i∈N ) be the mixed extension of

G. Then, there exists a Nash equilibrium σ∗ ∈
∏

i∈N ∆(Si) of G
′.

VI. Key Properties of Mixed Extensions

• A mixed strategy σi is strictly dominated by another mixed strategy σ′
i if and only

if for all s−i ∈ S−i,

πi(σi, s−i) < πi(σ
′
i, s−i).

5



• Suppose that si ∈ Si is strictly dominated in G = (N, (Si)i∈N , (ui)i∈N ). Then, any

σi ∈ ∆(Si) with σi(si) > 0 is strictly dominated in the mixed extension of G.

• Let σi be a best response to σ−i ∈
∏

j ̸=i∆(Sj). Then, every si ∈ Si such that

σi(si) > 0 is a best response to σ−i.

• Suppose si ∈ Si is not strictly dominated by any other pure strategy s′i ∈ Si. The

strategy si ∈ Si may be strictly dominated by a mixed strategy σi ∈ ∆(Si).

• Suppose that si ∈ Si is not a best response to any combination of pure strategies

s−i ∈ S−i. The strategy si may still be a best response to some combination of

mixed strategies σ−i ∈
∏

j ̸=i∆(Sj).
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