I. Review

- Game in strategic form: $G=\left(N,\left(S_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right)$ where
- N : set of players
- S_{i} : set of strategies of player $i \in N$
$-u_{i}$: payoff function of player $i \in N$
- Strict domination:

Definition. Let $G=\left(N,\left(S_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right)$ be a strategic form game. A strategy of player $i, s_{i} \in S_{i}$ is said to be strictly dominated by $s_{i}^{\prime} \in S_{i}$ if for all $s_{-i} \in S_{-i}$,

$$
u_{i}\left(s_{i}, s_{-i}\right)<u_{i}\left(s_{i}^{\prime}, s_{-i}\right)
$$

A strategy s_{i} is said to be strictly dominated if it is strictly dominated by some $s_{i}^{\prime} \in S_{i}$.

- By eliminating strictly dominated strategies in the prisoner's dillema, only one strategy, D, remained for both players.
II. Iterated Removal of Strictly Dominated Strategies - Example

$1 \backslash 2$	L	C	R
U	3,3	2,1	0,0
M	2,2	2,1	0,0
D	0,1	0,1	0,0

- Suppose that both players are rational in that they do not choose strictly dominated strategies. Moreover, suppose that each player knows that the other player is rational.
- In the above example, none of the strategies for player $1(U, M, D)$ are strictly dominated. So, supposing that player 1 is rational, player 1 still may choose U, M, or D.
- Strategy R of player 2 is strictly dominated by L and C. L nor C is strictly dominated. Therefore, player 2 , if rational, will not choose R.

$1 \backslash 2$	L	C	R
U	3,3	2,1	0,0
M	2,2	2,1	0,0
D	0,1	0,1	0,0

- Suppose that player 1 knows that player 2 is rational. Then, player 1 knows that player 2 will not choose R. Now, because both players know that player 2 will not choose R, the game is reduced to the following:

$1 \backslash 2$	L	C
U	3,3	2,1
M	2,2	2,1
D	0,1	0,1

- In the reduced game, D is now strictly dominated by M. So, if player 1 knows that player 2 is rational, player 1 will not choose D. If player 2 also knows that player 1 knows that player 2 is rational, then both players know that player 1 will not choose D, and the game is reduced to the following:

$1 \backslash 2$	L	C
U	3,3	2,1
M	2,2	2,1

- In the game above, strategy C is strictly dominated by L. Therefore, if player 2 knows that player 1 knows that player 2 is rational, then player 2 will not choose C. If player 1 also knows that player 2 knows that player 1 knows that player 2 is rational, then in both players' minds, the game is reduced to the following with now C deleted:

$1 \backslash 2$	L
U	3,3
M	2,2

- Now, M is strictly dominated by U. Therefore, if player 1 knows that player 2 knows that player 1 knows that player 2 is rational, then player 1 will not choose M. If player 2 also knows that player 1 knows that player 2 knows that player 1 knows that player 2 is rational, then both players can deduce that the strategy combination (U, L) results:

$1 \backslash 2$	L
U	3,3

- The process described above \rightarrow iterative removal of strictly dominated strategies
- Because the knowledge of rationality assumed for this process is complex, it is convenient instead to assume the following.

Common knowledge of rationality: Assume any chain (including infinite ones) of "Player 1 knows that player 2 knows that . . (infinitely long)."
III. Iterated Removal of Strictly Dominated Strategies - General Procedure

- Suppose throughout this section that the set of strategies S_{i} for each $i \in N$ is finite.

Version 1:

1. Step 1: For all $i \in N$, delete all such $s_{i} \in S_{i}$ that are strictly dominated. Let S_{i}^{1} denote the set of strategies that remain.
2. Step 2: Consider now the game with S_{i}^{1} as the set of strategies for each $i \in N$. Delete all such $s_{i} \in S_{i}^{1}$ that are strictly dominated by some $s_{i}^{\prime} \in S_{i}^{1}$. Let S_{i}^{2} denote the set of strategies that remain.
3. Continue the process until there are no strategies that are strictly dominated.

- If G is a game such that the above process stops and yields a unique strategy combination $\left(s_{1}^{*}, s_{2}^{*}, \cdots, s_{n}^{*}\right) \in \prod_{i \in N} S_{i}$, then the game G is said to be dominance solvable.
- The following proposition shows an important property of this process for finite games.

Proposition 1. Suppose that for each $i \in N, S_{i}$ is a finite set. Let s_{i} be strictly dominated by some s_{i}^{\prime} in step k. Then, s_{i} is also strictly dominated by some strategy $s_{i}^{\prime \prime}$ that is available in step l with $l \geq k$.

- This result implies that it does not matter whether all strictly dominated strategies or just one strictly dominated strategy is deleted in one step.
- It also does not matter whether all players delete their strictly dominated strategies in one step or just one player deletes his/her strictly dominated strategies in one step.
- From above, we can define two alternative versions, both leading to the same set of strategies in the end.

Version 2:

1. Step 1: Choose one player $i \in N$ who has a strictly dominated strategy. Delete one $s_{i} \in S_{i}$ that is strictly dominated. Let S_{i}^{1} denote the set of strategies that remain, and for the remaining players $j \neq i$, let $S_{j}^{1}=S_{j}$.
2. Step 2: Consider now the game with S_{i}^{1} as the set of strategies for each $i \in N$, choose one $i \in N$ and delete one $s_{i} \in S_{i}^{1}$ that is strictly dominated by some $s_{i}^{\prime} \in S_{i}^{1}$. Let S_{i}^{2} denote the set of strategies that remain for player i and let $S_{j}^{2}=S_{j}^{1}$ for all other players $j \neq i$.
3. Continue the process until no player has a strictly dominated strategy.

IV. Iterated Removal of Weakly Dominated Strategies

- Review of definition of weak domination:

A strategy of player i, s_{i} is said to be weakly dominated by another strategy s_{i}^{\prime} if for all $s_{-i} \in S_{-i}$,

$$
u_{i}\left(s_{i}, s_{-i}\right) \leq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)
$$

and for some s_{-i}, the above inequality holds with a strict inequality $<$. That is, for some $s_{-i} \in S_{-i}$,

$$
u_{i}\left(s_{i}, s_{-i}\right)<u_{i}\left(s_{i}^{\prime}, s_{-i}\right)
$$

- If s_{i} is weakly dominated by s_{i}^{\prime}, then choosing s_{i} is never better and in at least one case worse than choosing s_{i}^{\prime}.
- By replacing "strictly" with "weakly" in each version, one can think of anaologues of the two versions for strict domination.

Version 1W:

1. Step 1: For all $i \in N$, delete all such $s_{i} \in S_{i}$ that are weakly dominated. Let S_{i}^{1} denote the set of strategies that remain.
2. Step 2: Consider now the game with S_{i}^{1} as the set of strategies for each $i \in N$. Delete all such $s_{i} \in S_{i}^{1}$ that are weakly dominated by some $s_{i}^{\prime} \in S_{i}^{1}$. Let S_{i}^{2} denote the set of strategies that remain.
3. Continue the process until there are no strategies that are weakly dominated.

Version 2W:

1. Step 1: Choose one $i \in N$, and do the following. Delete all $s_{i} \in S_{i}$ that are weakly dominated. Let S_{i}^{1} denote the set of strategies that remain.
2. Step 2: Choose another $i \in N$, do the following. Considering now the game with S_{i}^{1} as the set of strategies for each $i \in N$, delete $s_{i} \in S_{i}^{1}$ that are weakly dominated by some $s_{i}^{\prime} \in S_{i}^{1}$. Let S_{i}^{2} denote the set of strategies that remain.
3. Continue the process until there are no strategies that are weakly dominated.

- The strategies that remain after version 1 W and 2 W may not be the same, even if each player has a finite number of strategies - that is, even if S_{i} is a finite set for all players.
- The order in which the players are chosen in version 2 W also affects which strategies remain in the end.

V. Never Best Response and Rationalizability

- A closely related concept to strict domination is concept of a strategy being never a best response.

Definition. Let $G=\left(N,\left(S_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right)$ be a game in strategic form. A strategy $s_{i} \in S_{i}$ for player i is said to be a best response to $s_{-i} \in S_{-i}$ if

$$
u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right), \forall s_{i}^{\prime} \in S_{i} .
$$

A strategy $s_{i} \in S_{i}$ is never a best response if there does not exist $s_{-i} \in S_{-i}$ to which s_{i} is a best response.

- If a strategy s_{i} is strictly dominated, then it is never a best response.
- Consider now iterated removal of strategies that are never best responses.

Iterated Removal of Strategies that are Never Best Responses:

1. Step 1: For all $i \in N$, delete all such $s_{i} \in S_{i}$ that are never best responses. Let S_{i}^{1} denote the set of strategies that remain.
2. Step 2: Consider now the game with S_{i}^{1} as the set of strategies for each $i \in N$. Delete all such $s_{i} \in S_{i}^{1}$ that are never best responses. Let S_{i}^{2} denote the set of strategies that remain.
3. Continue the process until there is not a strategy that is never a best response.

- The end result is a set of strategies that are said to be rationalizable. See Bernheim (1984) and Pearce (1984).
VI. Reference Notes - These two books below can be found in the Department of Social Engineering library.
- Vega-Redondo (2003) (Chapter 1, pp.13-17; Chapter 2, pp. 30-35)
- Mas-Colell, Whinston, and Green (1995) (Chapter 7 Sections 7.A-B and 7.D, Chapter 8 Section 8.A-C)

References

Bernheim, B. D. (1984). Rationalizable strategic behavior. Econometrica 52(4), 10071028.

Mas-Colell, A., M. Whinston, and J. Green (1995). Microeconomic Theory. New York: Oxford University Press.

Pearce, D. G. (1984). Rationalizable strategic behavior and the problem of perfection. Econometrica 52(4), 1029-1050.

Vega-Redondo, F. (2003). Economics and the Theory of Games. Cambridge University Press.

