
Advanced Macroeconomics: Dynamic Optimization

Advanced Macroeconomics

(Department of Social Engineering, Spring FY2015)

Dynamic Optimization in Continuous Time

Ryoji Ohdoi

Dept. of Social Engineering, Tokyo Tech

April 30, 2015

Ryoji Ohdoi (Tokyo Tech) Advanced Macroeconomics: Dynamic Optimization April 30, 2015 1 / 28



Advanced Macroeconomics: Dynamic Optimization

Course Guideline

Course Guideline

1 Dynamic Optimization (4 lectures incl. today)

2 The Ramsey-Cass-Koopmans Model (3 lectures)

3 Endogenous Growth Models (2 lectures)

4 Models of Time-inconsistent Preferences (Preference Reversals) (1-2 lectures)

5 Some Macroeconomic Applications of Stochastic Dynamic Programming (3
lectures)
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Advanced Macroeconomics: Dynamic Optimization

Plan of Lecutres in the Part of “Dynamic Optimziation”

April, 8 (Wed): An introduction to dynamic optimization

April, 15 (Wed) (Today): Infinite-horizon dynamic programming

April, 22 (Wed): Discrete dynamical system

April, 30 (Thu): Continuous-time optimal control
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Introduction

So far, we have considered dynamic optimization in discrete time.

More specifically,

1 If you face a finite-horizon problem (ex. cake-eating problem on 4/8 slides),

1 Applications of mathematical programming;
or

2 Solve the Bellman equation by “backward induction,”

2 If you face an infinite-horizon problem ⇒ Infinite-horizon DP (4/15 slides)

The optimal path is given by

⋆ the policy function (if the function V in the Bellman Eq. is explicitly found);
or

⋆ the Euler equation and the TVC (If V is differentiable).
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Introduction

⇓
1 Then, using the knowledge of discrete dynamical system, you can examine the

characteristics of the optimal path (4/22 slides).

What are the characteristics?
⇓

1 Existence of the steady states

2 Uniqueness of —

3 (Local) Stability of —

You must solve the linearized dynamical system of difference equations.
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Introduction

Dynamic optimization in continuous time is also useful tool for
macroeconomics, and other areas of dynamic economic analysis.

Therefore, the basic tools of dynamic optimization in continuous time are
introduced.
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Continuous-time Cake-eating problem (finite-horizon)

Consider the following problem, which is a continuous-time counterpart of
the cake-eating problem on 4/8 slides.

max
c:[0,T ]→R+

U [c] =

∫ T

0

exp(−ρt)u(c(t))dt,

s.t.

∫ T

0

c(t)dt ≤ W,

c(t) ≥ 0.

Notation:
▶ U [c] is the life-time utility functional;

(∗) Briefly speaking, a functional (汎関数) is a function of functions.
However, in economics, U is often simply called the life-time utility function.

▶ In continuous-time problems, the one-period utility function u is called the
instantaneous utility function (瞬時的効用関数).
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Continuous-time Cake-eating problem (finite-horizon)

As well as the discrete-time cake-eating problem on 4/8 slides, we assume

u′(c) > 0, u′′(c) < 0, lim
c→0

u′(c) = ∞.

▶ From the 1st assumption,
∫ T

0
c(t)dt ≤ W binds; and

▶ From the 3rd assumption, c(t) ≥ 0 never binds.

Then, the above problem is simplified to

max
c:[0,T ]→R+

U [c] =

∫ T

0

exp(−ρt)u(c(t))dt, (P0)

s.t.

∫ T

0

c(t)dt = W.
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Variational Problem

This type of problem is called the variational problem (変分問題), and
basically solved by the calculus of variation (変分法).

Proposition (Necessary Condition of Maximization)

Let c∗ : [0, T ] → R++ is the interior solution to the cake-eating problem. Then,
there exists λ ≥ 0 such that c∗(t) satisfies

e−ρtu′(c∗(t)) = λ∀t ∈ [0, T ]. (1)

Ryoji Ohdoi (Tokyo Tech) Advanced Macroeconomics: Dynamic Optimization April 30, 2015 9 / 28



Advanced Macroeconomics: Dynamic Optimization

Sketch of Proof

Let γ : [0, T ] → R denote a continuous function of time, and let ε ∈ R be a
real number.

Let us define the valuation of c∗(t) by

c(t, ε) = c∗(t) + εγ(t).

Assumption

c(t, ε) is feasible: i.e.,
∫ T

0
c(t, ε)dt ≤ W .

Obviously,
c(t, 0) = c∗(t)∀t ∈ [0, T ].
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Sketch of Proof
Consider the following Lagrangian:

L(ε) =

∫ T

0

e−ρtu(c(t, ε))dt+ λ

(
W −

∫ T

0

c(t, ε)dt

)
.

Differentiating L w.r.t. ε,

Lε(ε)(≡ dL(ε)/dε) =

∫ T

0

(
e−ρtu′(c(t, ε))− λ

) ∂c(t, ε)
∂ε

dt

=

∫ T

0

(
e−ρtu′(c(t, ε))− λ

)
γ(t)dt.

Evaluate this at ε = 0:

Lε(0) =

∫ T

0

(
e−ρtu′(c∗(t))− λ

)
γ(t)dt. (2)
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Sketch of Proof

If there exist some γ(t)’s such that Lε(0) > 0, we can obtain higher utility by
deviating from c∗(t).

This contradicts the assumption that c∗(t) is optimal. Then,

Lε(0) = 0∀γ(t),

which results in
exp(−ρt)u′(c∗(t)) = λ∀t ∈ [0, T ].

□
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Note

(1) corresponds to the first-order-condition of the problemas if we could
independently choose c(t) at each point in time.
⇕
We have the same condition as the cake-eating problem in discrete time.

Then, can we use the method on Lagrangian multipliers, or the Kuhn-Tucker
condition in a class of continuous-time models ?

To answer this question, we have to examine the sufficiency of the F. O. C.
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Variational Problem

Proposition (Sufficient Condition)

Suppose that u′′ < 0, and that c∗ : [0, T ] → R++ and λ ≥ 0 satisfy

u′(c∗(t)) = λ∀t ∈ [0, T ],∫ T

0

c∗(t)dt = W.

Then, c∗(t) gives the unique interior solution to the problem.

Proof.
Exercise.

Ryoji Ohdoi (Tokyo Tech) Advanced Macroeconomics: Dynamic Optimization April 30, 2015 14 / 28



Advanced Macroeconomics: Dynamic Optimization

Finite-horizon Optimal Control in Continuous Time

The canonical continuous-time optimization problem is given by:

max
c:[0,T ]→R+

J [x, c] =

∫ T

0

F (x(t), c(t), t)dt

subject to ẋ(t) ≡ dx(t)

dt
= g(x(t), c(t)) 0 ≤ t ≤ T, (P)

x(T ) ≥ 0, x(0) given.

where
▶ J is the objective functional, while F (·) is the one-period return function.

▶ c : [0, T ] → C ⊆ R+ is called the control variable.

▶ On the other hand, x : [0, T ] → X ⊆ R+, is called the state variable. This
kind of variables is determined only indirectly thorough the transition equation.
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Finite-horizon Optimal Control in Continuous Time

Three approaches:
1 Calculus of Variations;

2 Optimal Control (based on Pontryagin’s maximum principle); and

3 Continuous-time Dynamic Programming (based on Bellman’s principle of
optimality).

We will mainly focus on the second approach.
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Preliminary

Define the following functional L̂[x, c]:

L̂[x, c] =

∫ T

0

[
F (x(t), c(t), t)dt+ λ(t)

(
g(x(t), c(t))− ẋ(t)

)]
dt

where
▶ λ(t) ≥ 0 is called the costate variable (共役変数) or the adjoint variable (随伴
変数).

(∗) 簡単にいうと, L̂[x, c]は終点条件 x(T ) ≥ 0を一旦忘れた際のラグラン
ジュ(汎)関数.
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Preliminary

We can arrange L̂[x, c] as

L̂[x, c] =

∫ T

0

[
F (x(t), c(t), t)dt+ λ(t)g(x(t), c(t))

]
dt−

∫ T

0

λ(t)ẋ(t)dt.

Furthermore,

1 1st term of the RHS is simplified when we define the following function:

H(x, c, λ, t) ≡ F (x, c, t) + λg(x, c). (3)

H is called the Hamiltonian.

2 2nd term of the RHS is rewritten as∫ T

0

λ(t)ẋ(t)dt = λ(T )x(T )− λ(0)x(0)−
∫ T

0

x(t)λ̇(t)dt = 0. (4)
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Preliminary

In sum,

L̂[x, c] =

∫ T

0

[
H(x(t), c(t), λ(t), t) + x(t)λ̇(t)

]
dt+ λ(0)x(0)− λ(T )x(T ).

Assumption

Both of F and g are continuously differentiable.

⇒ The Hamiltonian H becomes continuously differentiable.

To simplify notation, hereafter we let Hx, Hc and Hλ denote the partial
derivatives of H with respect to x, c and λ, respectively:

Hj(x, c, λ, t) =
∂H(x, c, λ, t)

∂j
, j = x, c, λ.
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Pontryagin’s Maximum Principle

Theorem (Simplified Maximum Principle)

Consider the problem (P). Suppose that this problem has the interior solution
(x∗(t), c∗(t)). Then, there exists λ(t) ≥ 0 such that x∗(t) and c∗(t) satisfy the
following conditions:

Hc(x
∗(t), c∗(t), λ(t), t) = 0 ∀t ∈ [0, T ], (5)

λ̇(t) = −Hx(x
∗(t), c∗(t), λ(t), t) ∀t ∈ [0, T ], (6)

ẋ(t) = Hλ(x
∗(t), c∗(t), λ(t), t) ∀t ∈ [0, T ], (7)

and the following terminal condition:

x∗(T ) ≥ 0, λ(T ) ≥ 0, λ(T )x∗(T ) = 0. (8)

In (8), λ(T )x∗(T ) = 0 is called the transversality condition (横断性条件).
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Sketch of Proof

Let us define the valuation of c∗(t) by

c(t, ε) = c∗(t) + εγ(t).

Let us also define x(t, ε) as the path of the state variable corresponding to
the path of control variable c(t, ε). We assume that also x(t, ε) is feasible:
i.e., x(t, ε) satisfies

ẋ(t, ε)

(
≡ dx(t, ε)

dt

)
= g(x(t, ε), c(t, ε)).

Since the initial state is historically given, x(0, ε) = x(0) must hold. Then,

x(t, 0) = x∗(t)∀t ∈ [0, T ].
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Sketch of Proof

Then, define J (ε) by

J (ε) = L̂[x(t, ε), c(t, ε)]

=

∫ T

0

[
H
(
x(t, ε), c(t, ε), λ(t), t

)
+ x(t, ε)λ̇(t)

]
dt+ λ(0)x(0)− λ(T )x(T, ε).

Define the L(ε) by

L(ε) = J (ε) + ζx(T, ε)

(∗) 簡単にいうと, Lは終点条件 x(T ) ≥ 0を加味した上でのラグランジュ
関数.
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Sketch of Proof

後は cake-eating problemのときと同じ：

Lε(0) = 0 ⇔ Jε(0) + ζ
∂x(T, 0)

∂ε
= 0

⇔
∫ T

0

[
H∗

c γ(t) + (H∗
x + λ̇)

∂x(t, 0)

∂ϵ

]
dt+ (ζ − λ(T ))

∂x(T, 0)

∂ε
,

(9)

and

x∗(T ) ≥ 0, ζ ≥ 0, ζx∗(T ) = 0. (10)

Then, (9), (10) and the transition equation provide (5)–(8).
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Sufficiency

When are the necessary condition of optimality both necessary and sufficient?

Theorem (Mangasarian’s Sufficiency Theorem)

Consider the problem (P). Suppose that

1 (x∗(t), c∗(t)) and λ(t) satisfy the conditions (5)–(8).

2 Both of F and g satisfy Assumption 2, and

3 They are concave with respect to (x, c) for all t ∈ [0, T ].

Then (x∗(t), c∗(t)) solve the problem (P).

Proof.
Given in the supplementary material.
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Discounted Problem and Current-value Hamiltonian

For many problems in economics, future values of returns are discounted:

F (x, c, t) = exp(−ρt)f(x, c),

where
▶ ρ > 0 is called the discount rate (割引率).

Then, the problem (P) is now given by

max J =

∫ T

0

exp(−ρt)f(x(t), c(t))dt

subject to ẋ(t) = g(x(t), c(t)) 0 ≤ t ≤ T, (P’)

x(T ) ≥ 0, x(0) given.
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Discounted Problem and Current-value Hamiltonian

単に F (x, c, t)の “t”の影響の仕方を特定化しただけなので，問題の本質は
変わらない. ⇒The Hamiltonian is given by

H(x(t), c(t), λ(t), t) = exp(−ρt)f(x(t), c(t)) + λ(t)g(x(t), c(t)).

Rather, we can simplify the Hamiltonian thanks to the time-discounting.
Define the following new variable:

µ(t) = exp(ρt)λ(t),

and the new function:

Ĥ(x(t), c(t), µ(t)) = (x(t), c(t)) + µ(t)g(x(t), c(t)).

Ĥ is called the current-value Hamiltonian (当該価値ハミルトニアン).1

1On the other hand, H is called the present-value Hamiltonian (現在価値ハミルトニアン).
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Discounted Problem and Current-value Hamiltonian

Using this current-value Hamiltonian, we can rewrite the conditions (5)–(8)
more simply:

Ĥc(x
∗, c∗, µ) = 0 ⇔ fc(x

∗, c∗) + µgc(x
∗, c∗) = 0, (11)

µ̇ = ρµ− Ĥx(x
∗, c∗, µ) ⇔ µ̇ = ρµ− (fx(x

∗, c∗) + µgx(x
∗, c∗)) = 0, (12)

ẋ = Ĥµ(x
∗, c∗, µ) ⇔ ẋ = g(x, c), (13)

µ(T ) exp(−ρT ) ≥ 0, x∗(T ) ≥ 0, µ(T )x∗(T ) exp(−ρT ) = 0. (14)
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Summary of Procedure to Solve the Problem

So, when you encounter a discounted optimization problem in continuous
time, use the following cookbook procedure.

1 Construct the current-value Hamiltonian:

Ĥ(x, c, µ) = f(x, c) + µg(x, c).

2 Take the derivative of Hamiltonian with respect to c and set it equal to 0: i.e.,
Ĥc = 0.

3 Take the derivative of Hamiltonian with respect to x, and set it equal to
ρµ− µ̇, i. e.,

µ̇ = ρµ− Ĥx. (15)

4 Derive the TVC from the complementary slackness condition for x(T ) ≥ 0.
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