Advanced Macroeconomics

(Department of Social Engineering, Spring FY2015)

Dynamic Optimization in Continuous Time

Ryoji Ohdoi

Dept. of Social Engineering, Tokyo Tech

April 30, 2015

Ryoji Ohdoi (Tokyo Tech)

<ロ> (日) (日) (日) (日) (日)

Course Guideline

Course Guideline

- Dynamic Optimization (4 lectures incl. today)
- 2 The Ramsey-Cass-Koopmans Model (3 lectures)
- Indogenous Growth Models (2 lectures)
- Models of Time-inconsistent Preferences (Preference Reversals) (1-2 lectures)
- Some Macroeconomic Applications of Stochastic Dynamic Programming (3 lectures)

Plan of Lecutres in the Part of "Dynamic Optimziation"

- April, 8 (Wed): An introduction to dynamic optimization
- April, 15 (Wed) (Today): Infinite-horizon dynamic programming
- April, 22 (Wed): Discrete dynamical system
- April, 30 (Thu): Continuous-time optimal control

Introduction

- So far, we have considered dynamic optimization in discrete time.
- More specifically,
 - If you face a finite-horizon problem (ex. cake-eating problem on 4/8 slides),
 - Applications of mathematical programming; or
 - Solve the Bellman equation by "backward induction,"
 - **2** If you face an infinite-horizon problem \Rightarrow Infinite-horizon DP (4/15 slides)

The optimal path is given by

- * the policy function (if the function V in the Bellman Eq. is explicitly found); or
- * the Euler equation and the TVC (If V is differentiable).

Introduction

₩

Then, using the knowledge of discrete dynamical system, you can examine the characteristics of the optimal path (4/22 slides).

- What are the characteristics?
 ↓
 - Existence of the steady states
 - Oniqueness of —
 - (Local) Stability of —
- You must solve the linearized dynamical system of difference equations.

Introduction

- Dynamic optimization in continuous time is also useful tool for macroeconomics, and other areas of dynamic economic analysis.
- Therefore, the basic tools of dynamic optimization in continuous time are introduced.

Continuous-time Cake-eating problem (finite-horizon)

• Consider the following problem, which is a continuous-time counterpart of the cake-eating problem on 4/8 slides.

$$\max_{\substack{c:[0,T] \to \mathbb{R}_+ \\ \text{s.t.}}} \quad U[c] = \int_0^T \exp(-\rho t) u(c(t)) dt,$$
$$\sup_{\substack{s.t. \\ c(t) \ge 0.}} U[c] = \int_0^T e(t) dt \le W,$$

- Notation:
 - U[c] is the life-time utility functional;

(*) Briefly speaking, a functional (汎関数) is a function of functions. However, in economics, U is often simply called the life-time utility function.

► In continuous-time problems, the one-period utility function *u* is called the instantaneous utility function (瞬時的効用関数).

Continuous-time Cake-eating problem (finite-horizon)

• As well as the discrete-time cake-eating problem on 4/8 slides, we assume

$$u'(c) > 0, \ u''(c) < 0, \ \lim_{c \to 0} u'(c) = \infty.$$

- From the 1st assumption, $\int_0^T c(t)dt \leq W$ binds; and
- From the 3rd assumption, $c(t) \ge 0$ never binds.
- Then, the above problem is simplified to

$$\max_{\substack{c:[0,T]\to\mathbb{R}_+\\ \text{s.t.}}} U[c] = \int_0^T \exp(-\rho t)u(c(t))dt,$$
(P0)
s.t.
$$\int_0^T c(t)dt = W.$$

Variational Problem

• This type of problem is called the variational problem (变分問題), and basically solved by the calculus of variation (变分法).

Proposition (Necessary Condition of Maximization)

Let $c^*: [0,T] \to \mathbb{R}_{++}$ is the interior solution to the cake-eating problem. Then, there exists $\lambda \ge 0$ such that $c^*(t)$ satisfies

$$e^{-\rho t}u'(c^*(t)) = \lambda \forall t \in [0, T].$$
 (1)

- Let $\gamma: [0,T] \to \mathbb{R}$ denote a continuous function of time, and let $\varepsilon \in \mathbb{R}$ be a real number.
- Let us define the valuation of $c^*(t)$ by

$$c(t,\varepsilon) = c^*(t) + \varepsilon \gamma(t).$$

Assumption

 $c(t,\varepsilon)$ is feasible: i.e., $\int_0^T c(t,\varepsilon)dt \leq W$.

Obviously,

$$c(t,0) = c^*(t) \forall t \in [0,T].$$

• Consider the following Lagrangian:

$$L(\varepsilon) = \int_0^T e^{-\rho t} u(c(t,\varepsilon)) dt + \lambda \left(W - \int_0^T c(t,\varepsilon) dt \right).$$

• Differentiating L w.r.t. ε ,

$$L_{\varepsilon}(\varepsilon)(\equiv dL(\varepsilon)/d\varepsilon) = \int_{0}^{T} \left(e^{-\rho t}u'(c(t,\varepsilon)) - \lambda\right) \frac{\partial c(t,\varepsilon)}{\partial \varepsilon} dt$$
$$= \int_{0}^{T} \left(e^{-\rho t}u'(c(t,\varepsilon)) - \lambda\right) \gamma(t) dt.$$

• Evaluate this at $\varepsilon = 0$:

$$L_{\varepsilon}(0) = \int_{0}^{T} \left(e^{-\rho t} u'(c^{*}(t)) - \lambda \right) \gamma(t) dt.$$
(2)

- If there exist some $\gamma(t)$'s such that $L_{\varepsilon}(0) > 0$, we can obtain higher utility by deviating from $c^*(t)$.
- This contradicts the assumption that $c^*(t)$ is optimal. Then,

$$L_{\varepsilon}(0) = 0 \forall \gamma(t),$$

which results in

$$\exp(-\rho t)u'(c^*(t)) = \lambda \forall t \in [0, T].$$

Note

- (1) corresponds to the first-order-condition of the problemas if we could independently choose c(t) at each point in time.
 ↓
 We have the same condition as the cake-eating problem in discrete time.
- Then, can we use the method on Lagrangian multipliers, or the Kuhn-Tucker condition in a class of continuous-time models ?

To answer this question, we have to examine the sufficiency of the F. O. C.

イロト 不得下 イヨト イヨト

Variational Problem

Proposition (Sufficient Condition)

Suppose that u'' < 0, and that $c^* : [0,T] \to \mathbb{R}_{++}$ and $\lambda \ge 0$ satisfy

$$u'(c^*(t)) = \lambda \forall t \in [0, T],$$
$$\int_0^T c^*(t) dt = W.$$

Then, $c^*(t)$ gives the unique interior solution to the problem.

Proof.

Exercise.

<ロ> (日) (日) (日) (日) (日)

Finite-horizon Optimal Control in Continuous Time

• The canonical continuous-time optimization problem is given by:

$$\max_{\substack{c:[0,T] \to \mathbb{R}_+ \\ subject \text{ to } \dot{x}(t) \equiv \frac{dx(t)}{dt} = g(x(t), c(t)) \quad 0 \le t \le T, \\ x(T) \ge 0, \quad x(0) \text{ given.} }$$
(P)

where

- J is the objective functional, while $F(\cdot)$ is the one-period return function.
- $c: [0,T] \to C \subseteq \mathbb{R}_+$ is called the *control variable*.
- On the other hand, $x : [0, T] \to X \subseteq \mathbb{R}_+$, is called the *state variable*. This kind of variables is determined only indirectly thorough the *transition equation*.

イロン イロン イヨン イヨン

Finite-horizon Optimal Control in Continuous Time

- Three approaches:
 - Calculus of Variations;
 - 2 Optimal Control (based on Pontryagin's maximum principle); and
 - Ontinuous-time Dynamic Programming (based on Bellman's principle of optimality).
- We will mainly focus on the second approach.

Preliminary

• Define the following functional $\hat{L}[x,c]$:

$$\hat{L}[x,c] = \int_0^T \left[F(x(t),c(t),t)dt + \lambda(t) \Big(g(x(t),c(t)) - \dot{x}(t) \Big) \right] dt$$

where

λ(t) ≥ 0 is called the costate variable (共役変数) or the adjoint variable (随伴 変数).

(*) 簡単にいうと, $\hat{L}[x,c]$ は終点条件 $x(T) \ge 0$ を一旦忘れた際のラグラン ジュ(汎) 関数.

Preliminary

• We can arrange $\hat{L}[x,c]$ as

$$\hat{L}[x,c] = \int_0^T \left[F(x(t),c(t),t)dt + \lambda(t)g(x(t),c(t)) \right] dt - \int_0^T \lambda(t)\dot{x}(t)dt.$$

Furthermore,

1 1st term of the RHS is simplified when we define the following function:

$$H(x, c, \lambda, t) \equiv F(x, c, t) + \lambda g(x, c).$$
(3)

イロト イヨト イヨト イヨト

H is called the Hamiltonian.

2nd term of the RHS is rewritten as

$$\int_{0}^{T} \lambda(t)\dot{x}(t)dt = \lambda(T)x(T) - \lambda(0)x(0) - \int_{0}^{T} x(t)\dot{\lambda}(t)dt = 0.$$
 (4)

Preliminary

In sum,

$$\hat{L}[x,c] = \int_0^T \left[H(x(t),c(t),\lambda(t),t) + x(t)\dot{\lambda}(t) \right] dt + \lambda(0)x(0) - \lambda(T)x(T).$$

Assumption

Both of F and g are continuously differentiable.

- \Rightarrow The Hamiltonian H becomes continuously differentiable.
- To simplify notation, hereafter we let H_x , H_c and H_λ denote the partial derivatives of H with respect to x, c and λ , respectively:

$$H_j(x,c,\lambda,t) = \frac{\partial H(x,c,\lambda,t)}{\partial j}, \quad j=x,c,\lambda.$$

Pontryagin's Maximum Principle

Theorem (Simplified Maximum Principle)

Consider the problem (P). Suppose that this problem has the interior solution $(x^*(t), c^*(t))$. Then, there exists $\lambda(t) \ge 0$ such that $x^*(t)$ and $c^*(t)$ satisfy the following conditions:

$$H_{c}(x^{*}(t), c^{*}(t), \lambda(t), t) = 0 \quad \forall t \in [0, T],$$

$$\dot{\lambda}(t) = -H_{x}(x^{*}(t), c^{*}(t), \lambda(t), t) \quad \forall t \in [0, T],$$

$$\dot{x}(t) = H_{\lambda}(x^{*}(t), c^{*}(t), \lambda(t), t) \quad \forall t \in [0, T],$$

$$(7)$$

and the following terminal condition:

$$x^*(T) \ge 0, \ \lambda(T) \ge 0, \ \lambda(T)x^*(T) = 0.$$
 (8)

In (8), $\lambda(T)x^*(T) = 0$ is called the transversality condition (横断性条件).

<ロ> (日) (日) (日) (日) (日)

• Let us define the valuation of $c^*(t)$ by

$$c(t,\varepsilon) = c^*(t) + \varepsilon \gamma(t).$$

• Let us also define $x(t,\varepsilon)$ as the path of the state variable corresponding to the path of control variable $c(t,\varepsilon)$. We assume that also $x(t,\varepsilon)$ is feasible: i.e., $x(t,\varepsilon)$ satisfies

$$\dot{x}(t,\varepsilon)\left(\equiv \frac{dx(t,\varepsilon)}{dt}\right) = g(x(t,\varepsilon),c(t,\varepsilon)).$$

Since the initial state is historically given, $x(0,\varepsilon) = x(0)$ must hold. Then,

$$x(t,0) = x^*(t) \forall t \in [0,T].$$

• Then, define $\mathcal{J}(\varepsilon)$ by

$$\begin{aligned} \mathcal{J}(\varepsilon) &= \hat{L}[x(t,\varepsilon), c(t,\varepsilon)] \\ &= \int_0^T \left[H\big(x(t,\varepsilon), c(t,\varepsilon), \lambda(t), t\big) + x(t,\varepsilon)\dot{\lambda}(t) \right] dt + \lambda(0)x(0) - \lambda(T)x(T, t) \end{aligned}$$

 $\bullet\,$ Define the $\mathcal{L}(\varepsilon)$ by

$$\mathcal{L}(\varepsilon) = \mathcal{J}(\varepsilon) + \zeta x(T,\varepsilon)$$

(*) 簡単にいうと、 \mathcal{L} は終点条件 $x(T) \ge 0$ を加味した上でのラグランジュ 関数.

後は cake-eating problem のときと同じ:

$$\mathcal{L}_{\varepsilon}(0) = 0 \Leftrightarrow \mathcal{J}_{\varepsilon}(0) + \zeta \frac{\partial x(T,0)}{\partial \varepsilon} = 0$$

$$\Leftrightarrow \int_{0}^{T} \left[H_{c}^{*} \gamma(t) + (H_{x}^{*} + \dot{\lambda}) \frac{\partial x(t,0)}{\partial \epsilon} \right] dt + (\zeta - \lambda(T)) \frac{\partial x(T,0)}{\partial \varepsilon},$$

(9)

and

$$x^*(T) \ge 0, \ \zeta \ge 0, \zeta x^*(T) = 0.$$
 (10)

イロト イヨト イヨト イヨト

• Then, (9), (10) and the transition equation provide (5)–(8).

Sufficiency

• When are the necessary condition of optimality both necessary and sufficient?

Theorem (Mangasarian's Sufficiency Theorem)

Consider the problem (P). Suppose that

- **(** $x^*(t)$, $c^*(t)$) and $\lambda(t)$ satisfy the conditions (5)–(8).
- Both of F and g satisfy Assumption 2, and
- 3 They are concave with respect to (x, c) for all $t \in [0, T]$.

Then $(x^*(t), c^*(t))$ solve the problem (P).

Proof.

Given in the supplementary material.

Discounted Problem and Current-value Hamiltonian

• For many problems in economics, future values of returns are discounted:

$$F(x, c, t) = \exp(-\rho t)f(x, c),$$

where

• $\rho > 0$ is called the discount rate (割引率).

• Then, the problem (P) is now given by

$$\begin{aligned} \max \quad J &= \int_0^T \exp(-\rho t) f(x(t),c(t)) dt \\ \text{subject to} \quad \dot{x}(t) &= g(x(t),c(t)) \quad 0 \leq t \leq T, \\ \quad x(T) \geq 0, \quad x(0) \text{ given.} \end{aligned} \tag{P'}$$

Discounted Problem and Current-value Hamiltonian

 単に F(x,c,t) の "t" の影響の仕方を特定化しただけなので,問題の本質は 変わらない. ⇒The Hamiltonian is given by

$$H(x(t),c(t),\lambda(t),t)=\exp(-\rho t)f(x(t),c(t))+\lambda(t)g(x(t),c(t)).$$

• Rather, we can simplify the Hamiltonian thanks to the time-discounting. Define the following new variable:

$$\mu(t) = \exp(\rho t)\lambda(t),$$

and the new function:

$$\hat{H}(x(t), c(t), \mu(t)) = (x(t), c(t)) + \mu(t)g(x(t), c(t)).$$

 \hat{H} is called the current-value Hamiltonian (当該価値ハミルトニアン).¹

¹On the other hand, H is called the present-value Hamiltonian (現在価値ハミルトニアシ). つへへ

Discounted Problem and Current-value Hamiltonian

• Using this current-value Hamiltonian, we can rewrite the conditions (5)–(8) more simply:

$$\hat{H}_c(x^*, c^*, \mu) = 0 \Leftrightarrow f_c(x^*, c^*) + \mu g_c(x^*, c^*) = 0,$$
(11)

$$\dot{\mu} = \rho \mu - \hat{H}_x(x^*, c^*, \mu) \Leftrightarrow \dot{\mu} = \rho \mu - (f_x(x^*, c^*) + \mu g_x(x^*, c^*)) = 0, (12)$$

$$\dot{x} = \hat{H}_{\mu}(x^*, c^*, \mu) \Leftrightarrow \dot{x} = g(x, c), \tag{13}$$

$$\mu(T)\exp(-\rho T) \ge 0, \ x^*(T) \ge 0, \ \mu(T)x^*(T)\exp(-\rho T) = 0.$$
 (14)

Summary of Procedure to Solve the Problem

• So, when you encounter a discounted optimization problem in continuous time, use the following cookbook procedure.

$$\hat{H}(x,c,\mu) = f(x,c) + \mu g(x,c).$$

② Take the derivative of Hamiltonian with respect to c and set it equal to 0: i.e., $\hat{H}_c = 0$.

③ Take the derivative of Hamiltonian with respect to x, and set it equal to $\rho\mu - \dot{\mu}$, i. e.,

$$\dot{\mu} = \rho \mu - \hat{H}_x. \tag{15}$$

イロト イポト イヨト イヨト

(4) Derive the TVC from the complementary slackness condition for $x(T) \ge 0$.