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Advanced Macroeconomics: Dynamic Optimization

Course Guideline

Course Guideline

1 Dynamic Optimization (4 lectures incl. today)

2 The Ramsey-Cass-Koopmans Model (3 lectures)

3 Endogenous Growth Models (2 lectures)

4 Models of Time-inconsistent Preferences (Preference Reversals) (1-2 lectures)

5 Some Macroeconomic Applications of Stochastic Dynamic Programming (3
lectures)
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Advanced Macroeconomics: Dynamic Optimization

Plan of Lecutres in the Part of “Dynamic Optimziation”

April, 8 (Wed): An introduction to dynamic optimization

April, 15 (Wed) : Infinite-horizon dynamic programming

April, 22 (Wed) (Today): Discrete dynamical system

April, 30 (Thu): Continuous-time optimal control
(∗) Note the day of week, not the same as usual.
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Summary of Infinite-horizon DP

The value function (価値関数) of the original problem:

V ∗(x) = max
{xt}∞

t=1∈Π(x0)

∞∑
t=0

βtf(xt, xt+1).

Principle of Optimality (最適性の原理)
1 V ∗(x) satisfies the Bellman equation (ベルマン方程式):

V (x) = max
x′

{f(x, x′) + βV (x, x′)}. (1)

2 If V is a solution to the Bellman equation and if it satisfies

lim
t→∞

βtV (xt) = 0 ∀x0 ∈ X, {xt}∞t=1 ∈ Π(x0), (2)

then, V (x) = V ∗(x).
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Summary of Infinite-horizon DP

If we can explicitly obtain the value function, V ∗(x), we can accordingly
obtain the optimal path {x∗

t }∞t=1 from

∀x0 ∈ X, x∗
t+1 = h(x∗

t ) t = 0, 1, 2, . . . . (3)

where h : X → X is the policy function (政策関数).

If we can not, but if we know f and V are differentiable,

∀x0 ∈ X, f2(x
∗
t , x

∗
t+1) + βf1(x

∗
t+1, x

∗
t+2) = 0 t = 0, 1, 2, . . . , (4)

lim
t→∞

βtf1(x
∗
t , x

∗
t+1)x

∗
t = 0. (5)
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Discrete Dynamical System

A discrete dynamical system [離散力学系 (or 離散動学系)] is the system,
where the dynamics of variables are described by the system of difference
equations (連立差分方程式).

(3) is a first-order difference equation of xt, whereas the Euler equation (4) is
a second-order difference equation of that.

Let yt = xt+1. Then, the Euler equation (4) is expressed as

f2(x
∗
t , y

∗
t ) + βf1(y

∗
t , y

∗
t+1) = 0, (6)

x∗
t+1 = y∗t . (7)

⇒ Therefore, we hereafter consider a dynamical system given by the system
of first-order difference equation.
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Discrete Dynamical System

Let

▶ xt = (x1,t, x2,t, . . . , xN,t) ∈ X ⊆ RN denote the N dimensional vector; and
▶ g : X → X denote a function.

Definition

A discrete dynamical system is given by a triplet (Z+, X, g). In the system, the
dynamics of xt is given by

xt+1 = g(xt) t = 0, 1, 2, . . .

(∗) When g does not depend on time as above, the system is called autonomous

(自励的), while called non-autonomous (非自励的) if it does.
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Autonomous- and Non-autonomous systems

Example: In the Solow growth model with production technology given by
y = Atk

α (α ∈ (0, 1)), the dynamics of per-capita physical capital is

kt+1 = syt = sAtk
α
t , (8)

where s ∈ (0, 1) is the constant saving rate.

▶ If there is no technological progress, At is constant over time (i.e.,
At = A > 0).
⇒ (8) governs the autonomous system of kt.

▶ If At evolves according to

At+1 = (1 + g)At where g > 0, (9)

then, (8) is no longer autonomous by itself.
⇒ (8) and (9) jointly constitute the autonomous system of (kt, At).
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Steady State

Hereafter, we focus on

1 An autonomous system, xt+1 = g(xt); and
2 g is continuous.

Definition

x ∈ X is called the steady state (定常状態) or stationary state (〃) if x is a fixed
point of g.

(∗) x is a fixed point of g if x = g(x).
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An Important Note

Because of the continuity of g, if {xt} converges to a constant limit (denoted
by x̃),

x̃ = lim
t→∞

xt+1 = lim
t→∞

f(xt) = f
(
lim
t→∞

xt

)
= f(x̃), (10)

which yields x̃ = x.

⇒ we can readily find “If a limit exists, it is a steady state.”

Note that the reverse is NOT necessarily true.
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An Example of One Dimensional System (N = 1)
In the figure below, all of xA, xB and xC are steady states, but {xt} never
converges to xB , while it depends on x0 which state {xt} converges, xA or
xC .

Figure: An example of multiple steady states
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Various Types of Stability

Lyapunov stability (リアプノフ安定性)

Definition
The steady state x is Lyapunov stable, if

∀ε > 0, ∃δ ∈ (0, ε) s.t.
(
∥x0 − x∥ < δ ⇒ ∥xt − x∥ < ε∀t ∈ N

)
.
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Various Types of Stability

Asymptotic Stability (漸近安定性)

Definition
The steady state x is asymptotically stable, if it is Lyapunov stable, and δ is
chosen such that

∥x0 − x∥ < δ ⇒ lim
t→∞

xt = x.
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Various Types of Stability

If x is not Lyapunov stable, then, it is called unstable.
⇒ In the above example of one-dimensional dynamics, xB is unstable,
whereas both of xA and xC are asymptotically stable.

Region of Attraction (吸引領域 ) 
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Various Types of Stability

If the region of attraction is an entire space of x, in other words, if

∀x0 ∈ X, lim
t→∞

xt = x,

then the steady state x is globally asymptotically stable.

If x is Lyapunov stable, but not asymptotically stable, {xt} can converge to
a periodic orbit.
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Linear Dynamical System

Then, how do we grasp the stability of the steady state x?
⇓
This task is not so difficult, if the system is linear.

Example: In the Solow growth model presented above, the dynamics
kt+1 = sAkαt gives the following solution:

ln kt = ln k + αt(ln kt − ln k),

where k is the steady state, the value of which is given by (sA)1/(1−α).

⇒ We can find that kt → k as t → ∞.
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Linear Dynamical System

Assume that g(x) is linear. Specifically, consider the following linear system:

xt+1 = Axt +B, (11)

where A is an N ×N matrix, and B is an N × 1 vector.

A =

 a11 a12 · · · a1N
...

...
. . .

...
aN1 aN2 · · · aNN

 , B =

 b1
...
bN

 .

Assumption

I −A is a non-singler matrix (非特異行列).

⇓
The steady state x is given by (I −A)−1B.
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Linear Dynamical System

The linear system, (11) is rewritten as

xt+1 = Axt +B ⇔ xt+1 = Axt + (I −A)x

⇔ xt+1 − x = A(xt − x)

⇔ zt+1 = Azt, where zt = xt − x, (12)

which results in zt = Atz0, but this is not very informative.
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Linear Dynamical System

We can solve (12) by taking the following three steps:

Step 1 By solving the following characteristic equation (特性方程式), obtain the
eigenvalues λ.

det(A− λI) = 0.

▶ A two-dimensional case:

det(A− λI) = 0 ⇔ (a11 − λ)(a22 − λ)− a12a21 = 0

⇔ λ2 − (a11 + a22)λ+ a11a22 − a12a21 = 0

⇔ λ2 − trA+ detA = 0.
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Linear Dynamical System
We can solve (12) by taking the following three steps:

Step 2 Let λj(j = 1, 2, . . . , N) denote a eigenvalue, and let

vj = (v1j , v2j , . . . vNj)
T

denote the corresponding eigenvector.
Then,

Avj = λjvj , j = 1, 2, . . . , N,

or
AV = V D,

where

V =


v11 v12 · · · v1N
v21 v22 · · · v2N
...

...
. . .

...
vN1︸︷︷︸
=v1

vN2︸︷︷︸
=v2

· · · vNN︸︷︷︸
=vN

 , D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λN

 .
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Linear Dynamical System

We can solve (12) by taking the following three steps:

Step 3 Let ẑt = V −1zt. Then,

ẑt+1 = V −1zt+1 = V −1Azt = V −1AV ẑt

= Dẑt.

Then, for all j = 1, 2, . . . , N ,

ẑj,t = cj(λj)
t, (13)

where cj is a constant.
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Linear Dynamical System

Once (13) is obtained, we can solve (12) to obtain xt as follows:

xt = x+ zt = x+ V ẑt

= x+
N∑
j=1

vjcj(λj)
t, (14)

or equivalently,

xi,t = xi +
N∑
j=1

vijcj(λj)
t i = 1, 2, . . . , N.
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Stability of Steady States in Linear Dynamical System

Now, we are in position to discuss the stability of x in the linear system (11).

Theorem

Suppose that in the linear system (11), the matrix A has N distinct real
eigenvalues, λ1, λ2, . . . , λN . If

| λj |< 1 ∀j = 1, 2, . . . , N,

the steady state x is globally asymptotically stable

Proof.

From (14), it is obvious that if | λj |< 1 for all j, xi,t → xi as t → ∞ for all i and
cj .
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Stable Manifold
If | λj |> 1 for some j, the steady state x is not stable.

If this is the case, it crucially depends on the initial value x0 whether or not
xt → x as t → ∞.

Theorem
Suppose that the matrix A has N distinct real eigenvalues, λ1, λ2, . . . , λN , and

1 | λj |< 1 for j = 1, 2, . . . ,m(< N),

2 | λj |> 1 for j = m+ 1,m+ 2, . . . , N .

Then, xt → x if and only if

cj = 0 for j = m+ 1,m+ 2, . . . , N. (15)

Proof.

Recall (14).
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Stable Manifold

From (17) (or 17’), it follows that

x0 = x+

N∑
j=1

vjcj ,

or xi,t = xi +

N∑
j=1

vijcj i = 1, 2, . . . , N

 . (16)

Then, the above theorem characterizes the condition for the x0 under which
xt → x.

Define the set Ψ by

Ψ = {x0 ∈ X | cj = 0 for j = m+ 1,m+ 2, . . . , N}. (17)

▶ Briefly speaking, Ψ is the set of x0, where xt → x as t → ∞ for all x0 ∈ Ψ.

▶ Ψ, which is a subspace of Rm, is called the stable manifold (安定多様体),
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Two-dimensional Case

Consider the linear system of N = 2.

1 | λ1 |< 1 and | λ2 |< 1 (m = 2) ⇒ x is globally asymptotically stable.
⇒ x is called a sink (沈点).

2 | λ1 |> 1 and | λ2 |> 1 (m = 0) ⇒ x is called a source (源点).

3 | λ1 |< 1 and | λ2 |> 1 (m = 1) ⇒ x is called saddle (鞍点).
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Saddle Point Stability
In the case of x being a saddle, the dynamics of xt − x(= zt) is depicted as

unstable arm

stable arm

(∗) The set of the z0(= x0 − x) on the stable arm corresponds to the stable

manifold.
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Saddle Point Stability

If z0(= x0 − x) is on the stable arm, the economists say that the steady
state x is saddle point stable (鞍点安定).

In the Ramsey-Cass-Koopmans model, economic implications of the
saddle-point stability will be discussed.
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Nonlinear System

Now we consider the dynamical system is given by the nonlinear difference
equations.

xt+1 = g(xt). (18)

1 Lyapunov’s direct method (omitted)

2 Local stability
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Linearized System of Nonlinear Dynamics

Assumption

g : X → X is C1 class.

Linearization of g(x) around the steady state x:

xt+1 ≃ x+Dg(x)(xt − x), (19)

where Dg is the Jacobian matrix (ヤコビ行列)

Theorem (Local Stability)

Suppose that in the nonlinear system (18), the Jacobian matrix Dg of its
linearized system (19) has N distinct real eigenvalues, λ1, λ2, . . . , λN . If

| λj |< 1 ∀j = 1, 2, . . . , N,

the steady state x is locally asymptotically stable.
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