Advanced Macroeconomics

(Department of Social Engineering, Spring FY2015)

Dynamic Optimization in Discrete Time (3) Discrete Dynamical System

Ryoji Ohdoi

Dept. of Social Engineering, Tokyo Tech

April 22, 2015

Ryoji Ohdoi (Tokyo Tech)

Advanced Macroeconomics: Dynamic Optimization

April 22, 2015 1 / 30

・ロン ・四 と ・ ヨン ・ ヨン

Course Guideline

Course Guideline

- Dynamic Optimization (4 lectures incl. today)
- 2 The Ramsey-Cass-Koopmans Model (3 lectures)
- Indogenous Growth Models (2 lectures)
- Models of Time-inconsistent Preferences (Preference Reversals) (1-2 lectures)
- Some Macroeconomic Applications of Stochastic Dynamic Programming (3 lectures)

Plan of Lecutres in the Part of "Dynamic Optimziation"

- April, 8 (Wed): An introduction to dynamic optimization
- April, 15 (Wed) : Infinite-horizon dynamic programming
- April, 22 (Wed) (Today): Discrete dynamical system
- April, 30 (Thu): Continuous-time optimal control (*) Note the day of week, not the same as usual.

Summary of Infinite-horizon DP

• The value function (価値関数) of the original problem:

$$V^*(x) = \max_{\{x_t\}_{t=1}^{\infty} \in \Pi(x_0)} \sum_{t=0}^{\infty} \beta^t f(x_t, x_{t+1}).$$

Principle of Optimality (最適性の原理)
 V^{*}(x) satisfies the Bellman equation (ベルマン方程式):

$$V(x) = \max_{x'} \{ f(x, x') + \beta V(x, x') \}.$$
 (1)

2 If V is a solution to the Bellman equation and if it satisfies

$$\lim_{t \to \infty} \beta^t V(x_t) = 0 \ \forall x_0 \in X, \{x_t\}_{t=1}^{\infty} \in \Pi(x_0),$$
(2)

・ロン ・四 と ・ ヨン ・ ヨン

then, $V(x) = V^*(x)$.

Summary of Infinite-horizon DP

• If we can explicitly obtain the value function, $V^*(x),$ we can accordingly obtain the optimal path $\{x^*_t\}_{t=1}^\infty$ from

$$\forall x_0 \in X, \ x_{t+1}^* = h(x_t^*) \quad t = 0, 1, 2, \dots$$
(3)

where $h: X \to X$ is the policy function (政策関数).

• If we can not, but if we know f and V are differentiable,

$$\forall x_0 \in X, \ f_2(x_t^*, x_{t+1}^*) + \beta f_1(x_{t+1}^*, x_{t+2}^*) = 0 \quad t = 0, 1, 2, \dots,$$

$$\lim_{t \to \infty} \beta^t f_1(x_t^*, x_{t+1}^*) x_t^* = 0.$$
(5)

Discrete Dynamical System

- A discrete dynamical system [離散力学系 (or 離散動学系)] is the system, where the dynamics of variables are described by the system of difference equations (連立差分方程式).
- (3) is a first-order difference equation of x_t , whereas the Euler equation (4) is a second-order difference equation of that.
- Let $y_t = x_{t+1}$. Then, the Euler equation (4) is expressed as

$$f_2(x_t^*, y_t^*) + \beta f_1(y_t^*, y_{t+1}^*) = 0, \tag{6}$$

$$x_{t+1}^* = y_t^*. (7)$$

イロト 不得 トイヨト イヨト

 \Rightarrow Therefore, we hereafter consider a dynamical system given by the system of first-order difference equation.

Discrete Dynamical System

Let

• $\boldsymbol{x}_t = (x_{1,t}, x_{2,t}, \dots, x_{N,t}) \in X \subseteq \mathbb{R}^N$ denote the *N* dimensional vector; and • $q: X \to X$ denote a function.

Definition

A discrete dynamical system is given by a triplet (\mathbb{Z}_+, X, g) . In the system, the dynamics of x_t is given by

$$x_{t+1} = g(x_t)$$
 $t = 0, 1, 2, ...$

(*) When g does not depend on time as above, the system is called autonomous (自励的), while called non-autonomous (非自励的) if it does.

Autonomous- and Non-autonomous systems

• Example: In the Solow growth model with production technology given by $y = A_t k^{\alpha}$ ($\alpha \in (0, 1)$), the dynamics of per-capita physical capital is

$$k_{t+1} = sy_t = sA_t k_t^{\alpha},\tag{8}$$

where $s \in (0, 1)$ is the constant saving rate.

- If there is no technological progress, A_t is constant over time (i.e., $A_t = A > 0$).
 - \Rightarrow (8) governs the autonomous system of k_t .
- ▶ If A_t evolves according to

$$A_{t+1} = (1+g)A_t$$
 where $g > 0$, (9)

イロト イポト イヨト イヨト

then, (8) is no longer autonomous by itself.

 \Rightarrow (8) and (9) jointly constitute the autonomous system of (k_t, A_t) .

Steady State

- Hereafter, we focus on
 - (1) An autonomous system, $\boldsymbol{x}_{t+1} = g(\boldsymbol{x}_t)$; and
 - \bigcirc g is continuous.

Definition

 $\overline{x} \in X$ is called the steady state (定常状態) or stationary state (") if \overline{x} is a fixed point of g.

(*) \overline{x} is a fixed point of g if $\overline{x} = g(\overline{x})$.

An Important Note

Because of the continuity of g, if {x_t} converges to a constant limit (denoted by x̃),

$$\tilde{\boldsymbol{x}} = \lim_{t \to \infty} \boldsymbol{x}_{t+1} = \lim_{t \to \infty} f(\boldsymbol{x}_t) = f\left(\lim_{t \to \infty} \boldsymbol{x}_t\right) = f(\tilde{\boldsymbol{x}}),$$
 (10)

which yields $\tilde{x} = \overline{x}$.

 \Rightarrow we can readily find "If a limit exists, it is a steady state."

• Note that the reverse is NOT necessarily true.

An Example of One Dimensional System (N = 1)

• In the figure below, all of \overline{x}_A , \overline{x}_B and \overline{x}_C are steady states, but $\{x_t\}$ never converges to \overline{x}_B , while it depends on x_0 which state $\{x_t\}$ converges, \overline{x}_A or \overline{x}_C .

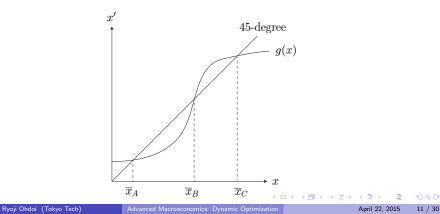


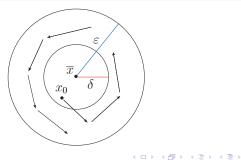
Figure: An example of multiple steady states

• Lyapunov stability (リアプノフ安定性)

Definition

The steady state \overline{x} is Lyapunov stable, if

$$\forall \varepsilon > 0, \exists \delta \in (0, \varepsilon) \, \, \mathsf{s.t.} \Big(\| \boldsymbol{x}_0 - \overline{\boldsymbol{x}} \| < \delta \Rightarrow \| \boldsymbol{x}_t - \overline{\boldsymbol{x}} \| < \varepsilon \forall t \in \mathbb{N} \Big)$$

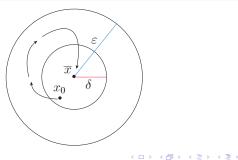


• Asymptotic Stability (漸近安定性)

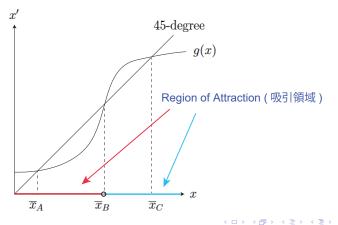
Definition

The steady state \overline{x} is asymptotically stable, if it is Lyapunov stable, and δ is chosen such that

$$\|oldsymbol{x}_0-\overline{oldsymbol{x}}\|<\delta\Rightarrow\lim_{t o\infty}oldsymbol{x_t}=\overline{oldsymbol{x}}.$$



• If \overline{x} is not Lyapunov stable, then, it is called unstable. \Rightarrow In the above example of one-dimensional dynamics, \overline{x}_B is unstable, whereas both of \overline{x}_A and \overline{x}_C are asymptotically stable.



• If the region of attraction is an entire space of x, in other words, if

$$\forall \boldsymbol{x}_0 \in X, \lim_{t \to \infty} \boldsymbol{x}_t = \overline{\boldsymbol{x}},$$

then the steady state \overline{x} is globally asymptotically stable.

• If \overline{x} is Lyapunov stable, but not asymptotically stable, $\{x_t\}$ can converge to a periodic orbit.

- Then, how do we grasp the stability of the steady state \overline{x} ? \Downarrow
- This task is not so difficult, if the system is linear.

Example: In the Solow growth model presented above, the dynamics $k_{t+1} = sAk_t^{\alpha}$ gives the following solution:

$$\ln k_t = \ln \overline{k} + \alpha^t (\ln k_t - \ln \overline{k}),$$

where \overline{k} is the steady state, the value of which is given by $(sA)^{1/(1-\alpha)}$.

$$\Rightarrow$$
 We can find that $k_t \rightarrow \overline{k}$ as $t \rightarrow \infty$.

• Assume that g(x) is linear. Specifically, consider the following linear system:

$$\boldsymbol{x}_{t+1} = A\boldsymbol{x}_t + B,\tag{11}$$

イロト イヨト イヨト イヨト

where A is an $N \times N$ matrix, and B is an $N \times 1$ vector.

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1N} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \cdots & a_{NN} \end{pmatrix}, \quad B = \begin{pmatrix} b_1 \\ \vdots \\ b_N \end{pmatrix}$$

Assumption

I - A is a non-singler matrix (非特異行列).

• The steady state \overline{x} is given by $(I - A)^{-1}B$.

• The linear system, (11) is rewritten as

$$\begin{aligned} \boldsymbol{x}_{t+1} &= A\boldsymbol{x}_t + B \Leftrightarrow \boldsymbol{x}_{t+1} = A\boldsymbol{x}_t + (I - A)\overline{\boldsymbol{x}} \\ &\Leftrightarrow \boldsymbol{x}_{t+1} - \overline{\boldsymbol{x}} = A(\boldsymbol{x}_t - \overline{\boldsymbol{x}}) \\ &\Leftrightarrow \boldsymbol{z}_{t+1} = A\boldsymbol{z}_t, \text{ where } \boldsymbol{z}_t = \boldsymbol{x}_t - \overline{\boldsymbol{x}}, \end{aligned}$$
(12)

which results in $z_t = A^t z_0$, but this is not very informative.

- We can solve (12) by taking the following three steps:
- Step 1 By solving the following characteristic equation (特性方程式), obtain the eigenvalues λ .

$$\det(A - \lambda I) = 0.$$

A two-dimensional case:

$$\det(A - \lambda I) = 0 \Leftrightarrow (a_{11} - \lambda)(a_{22} - \lambda) - a_{12}a_{21} = 0$$
$$\Leftrightarrow \lambda^2 - (a_{11} + a_{22})\lambda + a_{11}a_{22} - a_{12}a_{21} = 0$$
$$\Leftrightarrow \lambda^2 - \operatorname{tr} A + \det A = 0.$$

• We can solve (12) by taking the following three steps: Step 2 Let $\lambda_j (j = 1, 2, ..., N)$ denote a eigenvalue, and let

$$\boldsymbol{v}_j = (v_{1j}, v_{2j}, \dots v_{Nj})^\mathsf{T}$$

denote the corresponding eigenvector. Then,

$$A\boldsymbol{v}_j = \lambda_j \boldsymbol{v}_j, \quad j = 1, 2, \dots, N,$$

or

$$AV = VD,$$

where

$$V = \begin{pmatrix} v_{11} & v_{12} & \cdots & v_{1N} \\ v_{21} & v_{22} & \cdots & v_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ v_{N1} & v_{N2} & \cdots & v_{NN} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_N \end{pmatrix}, \quad D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_N \end{pmatrix}.$$

Ryoji Ohdoi (Tokyo Tech)

<ロ> (日) (日) (日) (日) (日)

• We can solve (12) by taking the following three steps:

Step 3 Let $\hat{\boldsymbol{z}}_t = V^{-1} \boldsymbol{z}_t$. Then,

$$\hat{z}_{t+1} = V^{-1} z_{t+1} = V^{-1} A z_t = V^{-1} A V \hat{z}_t$$

= $D \hat{z}_t$.

Then, for all $j = 1, 2, \ldots, N$,

$$\hat{z}_{j,t} = c_j (\lambda_j)^t, \tag{13}$$

<ロ> (日) (日) (日) (日) (日)

where c_i is a constant.

• Once (13) is obtained, we can solve (12) to obtain x_t as follows:

$$egin{aligned} & m{x}_t = \overline{m{x}} + m{z}_t = \overline{m{x}} + V \hat{m{z}}_t \ & = \overline{m{x}} + \sum_{j=1}^N m{v}_j c_j (\lambda_j)^t, \end{aligned}$$

イロト イヨト イヨト イヨト

or equivalently,

$$x_{i,t} = \overline{x}_i + \sum_{j=1}^N v_{ij} c_j (\lambda_j)^t \quad i = 1, 2, \dots, N.$$

Stability of Steady States in Linear Dynamical System

• Now, we are in position to discuss the stability of \overline{x} in the linear system (11).

Theorem

Suppose that in the linear system (11), the matrix A has N distinct real eigenvalues, $\lambda_1, \lambda_2, \ldots, \lambda_N$. If

$$\mid \lambda_j \mid < 1 \; \forall j = 1, 2, \dots, N,$$

the steady state \overline{x} is globally asymptotically stable

Proof.

From (14), it is obvious that if $|\lambda_j| < 1$ for all $j, x_{i,t} \to \overline{x}_i$ as $t \to \infty$ for all i and c_j .

<ロ> (日) (日) (日) (日) (日)

Stable Manifold

- If $|\lambda_j| > 1$ for some j, the steady state \overline{x} is not stable.
- If this is the case, it crucially depends on the initial value x_0 whether or not $x_t \to \overline{x}$ as $t \to \infty$.

Theorem

Suppose that the matrix A has N distinct real eigenvalues, $\lambda_1, \lambda_2, \ldots, \lambda_N$, and

(a)
$$|\lambda_j| < 1$$
 for $j = 1, 2, ..., m (< N)$,

2
$$|\lambda_j| > 1$$
 for $j = m + 1, m + 2, ..., N$.

Then, $oldsymbol{x}_t
ightarrow \overline{oldsymbol{x}}$ if and only if

$$c_j = 0$$
 for $j = m + 1, m + 2, \dots, N.$ (15)

Stable Manifold

• From (17) (or 17'), it follows that

$$\boldsymbol{x}_0 = \overline{\boldsymbol{x}} + \sum_{j=1}^N \boldsymbol{v}_j c_j, \quad \left(\text{or } x_{i,t} = \overline{x}_i + \sum_{j=1}^N v_{ij} c_j \quad i = 1, 2, \dots, N \right).$$
 (16)

Then, the above theorem characterizes the condition for the x_0 under which $x_t \to \overline{x}$.

• Define the set Ψ by

$$\Psi = \{ \boldsymbol{x}_0 \in X \mid c_j = 0 \text{ for } j = m + 1, m + 2, \dots, N \}.$$
(17)

- Briefly speaking, Ψ is the set of x_0 , where $x_t \to \overline{x}$ as $t \to \infty$ for all $x_0 \in \Psi$.
- ▶ Ψ , which is a subspace of \mathbb{R}^m , is called the stable manifold (安定多樣体),

Two-dimensional Case

• Consider the linear system of N = 2.

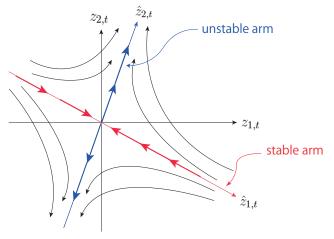
•
$$|\lambda_1| < 1$$
 and $|\lambda_2| < 1$ $(m = 2) \Rightarrow \overline{x}$ is globally asymptotically stable.
 $\Rightarrow \overline{x}$ is called a sink (沈点).

②
$$|\lambda_1| > 1$$
 and $|\lambda_2| > 1$ $(m = 0) \Rightarrow \overline{x}$ is called a source (源点).

③ $|\lambda_1| < 1$ and $|\lambda_2| > 1$ $(m = 1) \Rightarrow \overline{x}$ is called saddle (鞍点).

Saddle Point Stability

• In the case of \overline{x} being a saddle, the dynamics of $x_t - \overline{x}(=z_t)$ is depicted as



(*) The set of the $z_0 (= x_0 - \overline{x})$ on the stable arm corresponds to the stable manifold.

Ryoji Ohdoi (Tokyo Tech)

Saddle Point Stability

• If $z_0(=x_0 - \overline{x})$ is on the stable arm, the economists say that the steady state \overline{x} is saddle point stable (鞍点安定).

In the Ramsey-Cass-Koopmans model, economic implications of the saddle-point stability will be discussed.

Nonlinear System

• Now we consider the dynamical system is given by the nonlinear difference equations.

$$\boldsymbol{x}_{t+1} = g(\boldsymbol{x}_t). \tag{18}$$

- Use Lyapunov's direct method (omitted)
- 2 Local stability

Linearized System of Nonlinear Dynamics

Assumption

 $g: X \to X$ is C^1 class.

• Linearization of $g(\boldsymbol{x})$ around the steady state $\overline{\boldsymbol{x}}$:

$$\boldsymbol{x}_{t+1} \simeq \overline{\boldsymbol{x}} + Dg(\overline{\boldsymbol{x}})(\boldsymbol{x}_t - \overline{\boldsymbol{x}}),$$
 (19)

where Dg is the Jacobian matrix (ヤコビ行列)

Theorem (Local Stability)

Suppose that in the nonlinear system (18), the Jacobian matrix Dg of its linearized system (19) has N distinct real eigenvalues, $\lambda_1, \lambda_2, \ldots, \lambda_N$. If

$$\mid \lambda_j \mid < 1 \quad \forall j = 1, 2, \dots, N,$$

the steady state \overline{x} is locally asymptotically stable.

Ryoji Ohdoi (Tokyo Tech)

<ロト < 回 > < 回 > < 回 > < 回 >