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Advanced Macroeconomics: Dynamic Optimization

Course Guideline

Course Guideline

1 Dynamic Optimization (4 lectures incl. today)

2 The Ramsey-Cass-Koopmans Model (3 lectures)

3 Endogenous Growth Models (2 lectures)

4 Models of Time-inconsistent Preferences (Preference Reversals) (1-2 lectures)

5 Some Macroeconomic Applications of Stochastic Dynamic Programming (3
lectures)
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Plan of Lecutres in the Part of “Dynamic Optimziation”

April, 8 (Wed): An introduction to dynamic optimization

April, 15 (Wed) (Today): Infinite-horizon dynamic programming

April, 22 (Wed): System of difference equations and its stability

April, 30 (Thu): Continuous-time optimal control
(∗) Note the day of week, not the same as usual.
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Corrigendum

On p. 20,
▶ for “Wt < W” read “Wt ≤ W”;

On p.23,

▶ In (9), for “λTWT+1 = 0” read “βT−1λTWT+1 = 0”

▶ for “λTWT+1 is called...” read “βT−1λTWT+1 = 0 is called ...”
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Introduction

So far, we have considered a many, but finite-period case.

⇒ The consumption streams over T periods is denoted by
c = (c1, c2, . . . , cT ).

However, thinking of T being infinite is a good “approximation,” when we
consider open-ended situations.

Hereafter, we assume that time extends to 0 to infinity.

⇒ Let Z+ = {0, 1, 2, . . .} be the set of nonnegative integers;
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Notations

Let

ct ∈ C ⊆ R+ be the control variable (制御変数);

xt ∈ X ⊆ R+ be the state variable (状態変数);

⇒ {ct}∞t=0 and {xt}∞t=0 be their sequences;

(∗) Assumption that both of them are scalars is made only for simplicity.
Needless to say, each of them can be a vector.

Ryoji Ohdoi (Tokyo Tech) Advanced Macroeconomics: Dynamic Optimization April, 8, 2015 6 / 26



Advanced Macroeconomics: Dynamic Optimization

Notation (cont’d)

F : X × C → R be the one-period return function (一期収益関数); and

G : X × C → X be the transition function (推移関数);

⇒ This gives the transition equation: xt+1 = G(xt, ct).

β ∈ (0, 1) : the discount factor (割引因子)
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Infinite-horizon Optimization Problem

The infinite-horizon discounted optimization problem is generally given by

max
{ct}∞

t=0

∞∑
t=0

βtF (xt, ct)

s.t. xt+1 = G(xt, ct), (xt, ct) ∈ X × C, t = 0, 1, 2, . . . . (P0)

x0 ∈ X given

If you specify F (x, c) = u(c) and G(x, c) = x− c, you can immediately
recover the infinite-horizon counterpart of cake-eating problem.
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Cake-eating Example Reconsidered

Go back to the cake-eating problem.

Substituting the transition equation, ct = Wt −Wt+1, into u(ct), we can
define the following function v:

v(Wt,Wt+1) ≡ u(Wt −Wt+1)

Then, the cake-eating problem is expressed more simply:

max
{Wt}∞

t=1

∞∑
t=0

βtv(Wt,Wt+1)

s.t. Wt+1 ∈ [0,Wt]

W0 = W
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Infinite-horizon Optimization Problem

Hereafter, we assume that the problem (P0) can be expressed as the
following reduced form:

max
{xt}∞

t=1

∞∑
t=0

βtf(xt, xt+1)

s.t. xt+1 ∈ Γ(xt) (P)

x0 ∈ X given

where
▶ f : X ×X → R is a reduced form of the one-period return function, generated

from F and G;

▶ Γ : X → X is the correspondence, whose graph is

{(x, y) ∈ X ×X | y ∈ Γ(x)} .

Ryoji Ohdoi (Tokyo Tech) Advanced Macroeconomics: Dynamic Optimization April, 8, 2015 10 / 26



Advanced Macroeconomics: Dynamic Optimization

Preliminary

Given xt ∈ X, a choice x̃t+1 is feasible if x̃t+1 ∈ Γ(xt).

Given x0 ∈ X, let

Π(x0) = {{xt}∞t=1 | xt+1 ∈ Γ(xt)∀t ∈ Z+}

Definition

Given x0 ∈ X, any sequence {x̃t}∞t=1 ∈ Π(x0) is called the feasible path (or plan)
(実行可能経路).
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Assumptions

Assumption

For all x ∈ X, Γ(x) is nonempty.

Assumption

For all x0 ∈ X and {xt}∞t=1 ∈ Π(x0), limn→∞
∑n

t=0 β
tf(xt, xt+1) exists in R.

(∗) In Stokey and Lucas (1989, Ch. 4), the second assumption is relaxed so that
the finite sum

∑n
t=0 β

tf(xt, xt+1) can diverge: i.e., they assume
limn→∞

∑n
t=0 β

tf(xt, xt+1) exists in R ∪ {+∞,−∞}.
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Value Function

Definition (Value function)

The value function V ∗ : X → R is defined as

V ∗(x0) = max
{xt}∞

t=1

{ ∞∑
t=0

βtf(xt, xt+1)

∣∣∣∣∣ xt+1 ∈ Γ(xt)∀t ∈ Z+

}
, (1)

or more simply

V ∗(x0) = max
{xt}∞

t=1∈Π(x0)

∞∑
t=0

βtf(xt, xt+1). (1’)
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Bellman Equation

Definition (Bellman equation)

The following functional equation is called the Bellman equation (ベルマン方程式)

V (x) = max
x′∈Γ(x)

{f(x, x′) + βV (x′)} . (2)
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Principle of Optimality: Necessity

Theorem

The value function V ∗ defined in (1) satisfies the Bellman equation (2).

Proof.
Proof will be given in the supplementary materials.
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Principle of Optimality: Sufficiency

Theorem

Given x0 ∈ X, let {x∗
t }∞t=1 denote the sequence generated by solving the Bellman

equation (2). Suppose that {x∗
t }∞t=1 ∈ Π(x0) and the following boundary

condition (境界条件) is satisfied:

lim
t→∞

βtV (x∗
t ) = 0.

Then, {x∗
t }∞t=0 is the solution to the problem (1).

Proof.
Proof will be given in the supplementary materials.
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Policy Function

Definition (Policy function)

h : X → X is called the policy function (政策関数) if

h(x) = arg max
x′∈Γ(x)

{f(x, x′) + βV (x′)} (3)
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How to Obtain V ∗

In summary,

▶ From the first theorem, V ∗ satisfies the Bellman equation (2);

▶ Note that (2) may have other solutions. However, the second theorem shows
that as long as the boundary condition is satisfied, a solution to (2) is V ∗.

⇒ We can focus on (2) instead of the original problem (P).

Furthermore, if we can obtain the value function V ∗ from the Bellman
equation, we can express the sequence {x∗

t }∞t=1 in the following recursive
form:

∀x0 ∈ X, x∗
t+1 = h(x∗

t ), t = 0, 1, 2, . . . (4)
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How to Obtain V ∗

Conversely, we have to obtain the value function from the Bellman equation.

How?

1 Guess and verify (推測と確認)

2 Value function iteration (価値観数の繰り返し計算)

. . .
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Guess and Verify

If we specify the functional form, we can obtain V ∗ by the method of guess
and verify.

If we specify u(c) = ln c in the infinite-horizon cake-eating problem on pp. 9,
we get

V ∗(W ) =
1

1− β
lnW + (1− β)−1

[
ln(1− β) +

β

1− β
lnβ

]
.

We also obtain the policy function as W ′ = βW .
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Value Function Iteration

Given any V , define T by

T (V )(x) = max
x′∈Γ(x)

{f(x, x′) + βV (x′)}. (5)

T is called the Bellman operator.

▶ T : C(X) → C(X), where C(X) is a space of continuous function on X.

At first, arbitrarily choose a function, say, V0(x) ∈ C(X), and substitute this
into the right-hand-side of (5) for V .
⇓
Then, in (5), the operator T gives the new function, say, V1(x).
⇓
Substitute V1 into the RHS of (5) for V .
. . .
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Value Function Iteration

Briefly speaking, the functional sequence, {Vj(x)}∞j=0 is generated by the
Bellman operator.

Therefore, if Vj(x) uniformly converges to V ∗(x), we can obtain the value
function.

(∗) In Theorem 4.6 of Stokey and Lucas (1989, Ch. 4), it is shown that the
operator T : C(X) → C(X) is a contraction mapping, which in turn shows
that

T (V ∗) = V ∗, lim
j→∞

T j(V0) = V ∗∀V0 ∈ C(X).

(Proof is omitted here) Then, Vj uniformly converges to V ∗.
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Euler Equation

If V is differentiable, the problem given by the Bellman equation (2) has the
following first-order-condition:

f2(x, x
′) + βVx(x

′) = 0,

where f2 = ∂f(x, x′)/∂x′.

Given V , the above condition gives the policy function implicitly, x′ = h(x).

Substituting back into the Bellman equation, we have

V (x) = f(x, h(x)) + βV (h(x)). (6)
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Euler Equation

Differentiating (6) with respect to x yields:

Vx(x) = f1(x, x
′) + (f2(x, x

′) + βVx(x
′))︸ ︷︷ ︸

=0 (envelop theorem)

h′(x)

= f1(x, x
′)

Then, F.O.C is rewritten as

f2(x, x
′) + βf1(x

′, x′′) = 0,

or, if we use the time script,

f2(xt−1, xt) + βf1(xt, xt+1) = 0. (7)

(7) is called the Euler equation (オイラー方程式).
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Transversality Condition

In the Euler equation (7), the unknown function V disappears.

Therefore, the Euler equation is very useful, when we face the difficulty of
finding V ∗ directly, but can verify V ∗ is differentiable.

However, the Euler equation is necessary for maximization, but not sufficient.
⇓
The next theorem gives the sufficient conditions for the problem (P).
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Transversality Condition

Theorem

Suppose that f(x, x′) is increasing in x, concave and continuously differentiable in
(x, x′). Then, given x0 ∈ X, the sequence {x∗

t }∞t=1 ∈ Π(x0) is the solution to (P)
if it satisfies the Euler equation (7), and

lim
t→∞

βtf1(x
∗
t , x

∗
t+1)x

∗
t = 0. (8)

Proof.
Proof will be given in the supplementary materials.

(8) is the transversality condition (横断性条件) in an infinite-horizon problem.
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