Advanced Macroeconomics
(Department of Social Engineering, Spring FY2015)

Dynamic Optimization in Discrete Time (2): Infinite-horizon Dynamic Programming

Ryoji Ohdoi
Dept. of Social Engineering, Tokyo Tech

April, 8, 2015

Course Guideline

- Course Guideline
(1) Dynamic Optimization (4 lectures incl. today)
(2) The Ramsey-Cass-Koopmans Model (3 lectures)
(3) Endogenous Growth Models (2 lectures)
(4) Models of Time-inconsistent Preferences (Preference Reversals) (1-2 lectures)
(5) Some Macroeconomic Applications of Stochastic Dynamic Programming (3 lectures)

Plan of Lecutres in the Part of "Dynamic Optimziation"

- April, 8 (Wed): An introduction to dynamic optimization
- April, 15 (Wed) (Today): Infinite-horizon dynamic programming
- April, 22 (Wed): System of difference equations and its stability
- April, 30 (Thu): Continuous-time optimal control $(*)$ Note the day of week, not the same as usual.

Corrigendum

- On p. 20,
- for " $W_{t}<W$ " read " $W_{t} \leq W$ ";
- On p.23,
- In (9), for " $\lambda_{T} W_{T+1}=0$ " read " $\beta^{T-1} \lambda_{T} W_{T+1}=0$ "
- for " $\lambda_{T} W_{T+1}$ is called..." read " $\beta^{T-1} \lambda_{T} W_{T+1}=0$ is called ..."

Introduction

- So far, we have considered a many, but finite-period case.
\Rightarrow The consumption streams over T periods is denoted by $\boldsymbol{c}=\left(c_{1}, c_{2}, \ldots, c_{T}\right)$.
- However, thinking of T being infinite is a good "approximation," when we consider open-ended situations.
- Hereafter, we assume that time extends to 0 to infinity.
\Rightarrow Let $\mathbb{Z}_{+}=\{0,1,2, \ldots\}$ be the set of nonnegative integers;

Notations

Let

- $c_{t} \in C \subseteq \mathbb{R}_{+}$be the control variable（制御変数）；
- $x_{t} \in X \subseteq \mathbb{R}_{+}$be the state variable（状態変数）；
$\Rightarrow\left\{c_{t}\right\}_{t=0}^{\infty}$ and $\left\{x_{t}\right\}_{t=0}^{\infty}$ be their sequences；
（＊）Assumption that both of them are scalars is made only for simplicity． Needless to say，each of them can be a vector．

Notation（cont＇d）

- $F: X \times C \rightarrow \mathbb{R}$ be the one－period return function（一期収益関数）；and
- $G: X \times C \rightarrow X$ be the transition function（推移関数）；
\Rightarrow This gives the transition equation：$x_{t+1}=G\left(x_{t}, c_{t}\right)$ ．
－$\beta \in(0,1)$ ：the discount factor（割引因子）

Infinite-horizon Optimization Problem

- The infinite-horizon discounted optimization problem is generally given by

$$
\begin{aligned}
\max _{\left\{c_{t}\right\}_{t=0}^{\infty}} & \sum_{t=0}^{\infty} \beta^{t} F\left(x_{t}, c_{t}\right) \\
\text { s.t. } & x_{t+1}=G\left(x_{t}, c_{t}\right), \quad\left(x_{t}, c_{t}\right) \in X \times C, \quad t=0,1,2, \ldots \\
& x_{0} \in X \text { given }
\end{aligned}
$$

- If you specify $F(x, c)=u(c)$ and $G(x, c)=x-c$, you can immediately recover the infinite-horizon counterpart of cake-eating problem.

Cake-eating Example Reconsidered

- Go back to the cake-eating problem.
- Substituting the transition equation, $c_{t}=W_{t}-W_{t+1}$, into $u\left(c_{t}\right)$, we can define the following function v :

$$
v\left(W_{t}, W_{t+1}\right) \equiv u\left(W_{t}-W_{t+1}\right)
$$

- Then, the cake-eating problem is expressed more simply:

$$
\begin{aligned}
\max _{\left\{W_{t}\right\}_{t=1}^{\infty}} & \sum_{t=0}^{\infty} \beta^{t} v\left(W_{t}, W_{t+1}\right) \\
\text { s.t. } & W_{t+1} \in\left[0, W_{t}\right] \\
& W_{0}=W
\end{aligned}
$$

Infinite-horizon Optimization Problem

- Hereafter, we assume that the problem (P0) can be expressed as the following reduced form:

$$
\begin{align*}
\max _{\left\{x_{t}\right\}_{t=1}^{\infty}} & \sum_{t=0}^{\infty} \beta^{t} f\left(x_{t}, x_{t+1}\right) \\
\text { s.t. } & x_{t+1} \in \Gamma\left(x_{t}\right) \tag{P}\\
& x_{0} \in X \text { given }
\end{align*}
$$

where

- $f: X \times X \rightarrow \mathbb{R}$ is a reduced form of the one-period return function, generated from F and G;
- $\Gamma: X \rightarrow X$ is the correspondence, whose graph is

$$
\{(x, y) \in X \times X \mid y \in \Gamma(x)\}
$$

Preliminary

－Given $x_{t} \in X$ ，a choice \tilde{x}_{t+1} is feasible if $\tilde{x}_{t+1} \in \Gamma\left(x_{t}\right)$ ．
－Given $x_{0} \in X$ ，let

$$
\Pi\left(x_{0}\right)=\left\{\left\{x_{t}\right\}_{t=1}^{\infty} \mid x_{t+1} \in \Gamma\left(x_{t}\right) \forall t \in \mathbb{Z}_{+}\right\}
$$

Definition

Given $x_{0} \in X$ ，any sequence $\left\{\tilde{x}_{t}\right\}_{t=1}^{\infty} \in \Pi\left(x_{0}\right)$ is called the feasible path（or plan） （実行可能経路）。

Assumptions

Assumption

For all $x \in X, \Gamma(x)$ is nonempty.

Assumption

For all $x_{0} \in X$ and $\left\{x_{t}\right\}_{t=1}^{\infty} \in \Pi\left(x_{0}\right), \lim _{n \rightarrow \infty} \sum_{t=0}^{n} \beta^{t} f\left(x_{t}, x_{t+1}\right)$ exists in \mathbb{R}.
(*) In Stokey and Lucas (1989, Ch. 4), the second assumption is relaxed so that the finite sum $\sum_{t=0}^{n} \beta^{t} f\left(x_{t}, x_{t+1}\right)$ can diverge: i.e., they assume $\lim _{n \rightarrow \infty} \sum_{t=0}^{n} \beta^{t} f\left(x_{t}, x_{t+1}\right)$ exists in $\mathbb{R} \cup\{+\infty,-\infty\}$.

Value Function

Definition (Value function)

The value function $V^{*}: X \rightarrow \mathbb{R}$ is defined as

$$
\begin{equation*}
V^{*}\left(x_{0}\right)=\max _{\left\{x_{t}\right\}_{t=1}^{\infty}}\left\{\sum_{t=0}^{\infty} \beta^{t} f\left(x_{t}, x_{t+1}\right) \mid x_{t+1} \in \Gamma\left(x_{t}\right) \forall t \in \mathbb{Z}_{+}\right\}, \tag{1}
\end{equation*}
$$

or more simply

$$
\begin{equation*}
V^{*}\left(x_{0}\right)=\max _{\left\{x_{t}\right\}_{t=1}^{\infty} \in \Pi\left(x_{0}\right)} \sum_{t=0}^{\infty} \beta^{t} f\left(x_{t}, x_{t+1}\right) \tag{1'}
\end{equation*}
$$

Bellman Equation

Definition（Bellman equation）

The following functional equation is called the Bellman equation（ベルマン方程式）

$$
\begin{equation*}
V(x)=\max _{x^{\prime} \in \Gamma(x)}\left\{f\left(x, x^{\prime}\right)+\beta V\left(x^{\prime}\right)\right\} . \tag{2}
\end{equation*}
$$

Principle of Optimality: Necessity

Theorem

The value function V^{*} defined in (1) satisfies the Bellman equation (2).

Proof.
Proof will be given in the supplementary materials.

Principle of Optimality：Sufficiency

Theorem

Given $x_{0} \in X$ ，let $\left\{x_{t}^{*}\right\}_{t=1}^{\infty}$ denote the sequence generated by solving the Bellman equation（2）．Suppose that $\left\{x_{t}^{*}\right\}_{t=1}^{\infty} \in \Pi\left(x_{0}\right)$ and the following boundary condition（境界条件）is satisfied：

$$
\lim _{t \rightarrow \infty} \beta^{t} V\left(x_{t}^{*}\right)=0 .
$$

Then，$\left\{x_{t}^{*}\right\}_{t=0}^{\infty}$ is the solution to the problem（1）．

Proof．

Proof will be given in the supplementary materials．

Policy Function

Definition（Policy function）

$h: X \rightarrow X$ is called the policy function（政策関数）if

$$
\begin{equation*}
h(x)=\arg \max _{x^{\prime} \in \Gamma(x)}\left\{f\left(x, x^{\prime}\right)+\beta V\left(x^{\prime}\right)\right\} \tag{3}
\end{equation*}
$$

How to Obtain V^{*}

- In summary,
- From the first theorem, V^{*} satisfies the Bellman equation (2);
- Note that (2) may have other solutions. However, the second theorem shows that as long as the boundary condition is satisfied, a solution to (2) is V^{*}.
\Rightarrow We can focus on (2) instead of the original problem (P).
- Furthermore, if we can obtain the value function V^{*} from the Bellman equation, we can express the sequence $\left\{x_{t}^{*}\right\}_{t=1}^{\infty}$ in the following recursive form:

$$
\begin{equation*}
\forall x_{0} \in X, \quad x_{t+1}^{*}=h\left(x_{t}^{*}\right), \quad t=0,1,2, \ldots \tag{4}
\end{equation*}
$$

How to Obtain V^{*}

－Conversely，we have to obtain the value function from the Bellman equation．
－How？
（1）Guess and verify（推測と確認）
（2）Value function iteration（価値観数の繰り返し計算）

Guess and Verify

- If we specify the functional form, we can obtain V^{*} by the method of guess and verify.
- If we specify $u(c)=\ln c$ in the infinite-horizon cake-eating problem on pp. 9, we get

$$
V^{*}(W)=\frac{1}{1-\beta} \ln W+(1-\beta)^{-1}\left[\ln (1-\beta)+\frac{\beta}{1-\beta} \ln \beta\right] .
$$

We also obtain the policy function as $W^{\prime}=\beta W$.

Value Function Iteration

- Given any V, define T by

$$
\begin{equation*}
T(V)(x)=\max _{x^{\prime} \in \Gamma(x)}\left\{f\left(x, x^{\prime}\right)+\beta V\left(x^{\prime}\right)\right\} . \tag{5}
\end{equation*}
$$

T is called the Bellman operator.

- $T: C(X) \rightarrow C(X)$, where $C(X)$ is a space of continuous function on X.
- At first, arbitrarily choose a function, say, $V_{0}(x) \in C(X)$, and substitute this into the right-hand-side of (5) for V. \Downarrow
- Then, in (5), the operator T gives the new function, say, $V_{1}(x)$. \Downarrow
- Substitute V_{1} into the RHS of (5) for V.

Value Function Iteration

- Briefly speaking, the functional sequence, $\left\{V_{j}(x)\right\}_{j=0}^{\infty}$ is generated by the Bellman operator.
- Therefore, if $V_{j}(x)$ uniformly converges to $V^{*}(x)$, we can obtain the value function.
(*) In Theorem 4.6 of Stokey and Lucas (1989, Ch. 4), it is shown that the operator $T: C(X) \rightarrow C(X)$ is a contraction mapping, which in turn shows that

$$
T\left(V^{*}\right)=V^{*}, \quad \lim _{j \rightarrow \infty} T^{j}\left(V_{0}\right)=V^{*} \forall V_{0} \in C(X) .
$$

(Proof is omitted here) Then, V_{j} uniformly converges to V^{*}.

Euler Equation

- If V is differentiable, the problem given by the Bellman equation (2) has the following first-order-condition:

$$
f_{2}\left(x, x^{\prime}\right)+\beta V_{x}\left(x^{\prime}\right)=0,
$$

where $f_{2}=\partial f\left(x, x^{\prime}\right) / \partial x^{\prime}$.

- Given V, the above condition gives the policy function implicitly, $x^{\prime}=h(x)$.
- Substituting back into the Bellman equation, we have

$$
\begin{equation*}
V(x)=f(x, h(x))+\beta V(h(x)) . \tag{6}
\end{equation*}
$$

Euler Equation

－Differentiating（6）with respect to x yields：

$$
\begin{aligned}
V_{x}(x) & =f_{1}\left(x, x^{\prime}\right)+\underbrace{\left(f_{2}\left(x, x^{\prime}\right)+\beta V_{x}\left(x^{\prime}\right)\right)}_{=0 \text { (envelop theorem) }} h^{\prime}(x) \\
& =f_{1}\left(x, x^{\prime}\right)
\end{aligned}
$$

－Then，F．O．C is rewritten as

$$
f_{2}\left(x, x^{\prime}\right)+\beta f_{1}\left(x^{\prime}, x^{\prime \prime}\right)=0,
$$

or，if we use the time script，

$$
\begin{equation*}
f_{2}\left(x_{t-1}, x_{t}\right)+\beta f_{1}\left(x_{t}, x_{t+1}\right)=0 . \tag{7}
\end{equation*}
$$

（7）is called the Euler equation（オイラー方程式）．

Transversality Condition

- In the Euler equation (7), the unknown function V disappears.
- Therefore, the Euler equation is very useful, when we face the difficulty of finding V^{*} directly, but can verify V^{*} is differentiable.
- However, the Euler equation is necessary for maximization, but not sufficient.
\Downarrow
The next theorem gives the sufficient conditions for the problem (P).

Transversality Condition

Theorem

Suppose that $f\left(x, x^{\prime}\right)$ is increasing in x ，concave and continuously differentiable in （ x, x^{\prime} ）．Then，given $x_{0} \in X$ ，the sequence $\left\{x_{t}^{*}\right\}_{t=1}^{\infty} \in \Pi\left(x_{0}\right)$ is the solution to（ P ） if it satisfies the Euler equation（7），and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \beta^{t} f_{1}\left(x_{t}^{*}, x_{t+1}^{*}\right) x_{t}^{*}=0 \tag{8}
\end{equation*}
$$

Proof．

Proof will be given in the supplementary materials．
（8）is the transversality condition（横断性条件）in an infinite－horizon problem．

