Advanced Macroeconomics

(Department of Social Engineering, Spring FY2015)

Dynamic Optimization in Discrete Time (2): Infinite-horizon Dynamic Programming

Ryoji Ohdoi

Dept. of Social Engineering, Tokyo Tech

April, 8, 2015

Ryoji Ohdoi (Tokyo Tech)

Advanced Macroeconomics: Dynamic Optimization

April, 8, 2015 1 / 26

<ロ> (日) (日) (日) (日) (日)

Course Guideline

Course Guideline

- Dynamic Optimization (4 lectures incl. today)
- 2 The Ramsey-Cass-Koopmans Model (3 lectures)
- Indogenous Growth Models (2 lectures)
- Models of Time-inconsistent Preferences (Preference Reversals) (1-2 lectures)
- Some Macroeconomic Applications of Stochastic Dynamic Programming (3 lectures)

Plan of Lecutres in the Part of "Dynamic Optimziation"

- April, 8 (Wed): An introduction to dynamic optimization
- April, 15 (Wed) (Today): Infinite-horizon dynamic programming
- April, 22 (Wed): System of difference equations and its stability
- April, 30 (Thu): Continuous-time optimal control (*) Note the day of week, not the same as usual.

Corrigendum

- On p. 20,
 - for " $W_t < W$ " read " $W_t \le W$ ";
- On p.23,
 - In (9), for " $\lambda_T W_{T+1} = 0$ " read " $\beta^{T-1} \lambda_T W_{T+1} = 0$ "
 - ▶ for " $\lambda_T W_{T+1}$ is called..." read " $\beta^{T-1} \lambda_T W_{T+1} = 0$ is called ..."

Introduction

• So far, we have considered a many, but finite-period case.

 \Rightarrow The consumption streams over T periods is denoted by $\boldsymbol{c} = (c_1, c_2, \dots, c_T).$

- However, thinking of T being infinite is a good "approximation," when we consider open-ended situations.
- Hereafter, we assume that time extends to 0 to infinity.

 \Rightarrow Let $\mathbb{Z}_+ = \{0, 1, 2, \ldots\}$ be the set of nonnegative integers;

イロト 不得 トイヨト イヨト

Notations

Let

- $c_t \in C \subseteq \mathbb{R}_+$ be the control variable (制御変数);
- $x_t \in X \subseteq \mathbb{R}_+$ be the state variable (状態変数);

 $\Rightarrow \{c_t\}_{t=0}^{\infty}$ and $\{x_t\}_{t=0}^{\infty}$ be their sequences;

(*) Assumption that both of them are scalars is made only for simplicity. Needless to say, each of them can be a vector.

Notation (cont'd)

- $F: X \times C \to \mathbb{R}$ be the one-period return function (一期収益関数); and
- $G: X \times C \to X$ be the transition function (推移関数);

 \Rightarrow This gives the transition equation: $x_{t+1} = G(x_t, c_t)$.

• $\beta \in (0,1)$: the discount factor (割引因子)

・ロト ・回ト ・ヨト ・ヨト

Infinite-horizon Optimization Problem

• The infinite-horizon discounted optimization problem is generally given by

$$\max_{\substack{\{c_t\}_{t=0}^{\infty}\\ \text{s.t.}}} \sum_{t=0}^{\infty} \beta^t F(x_t, c_t)$$

s.t. $x_{t+1} = G(x_t, c_t), \quad (x_t, c_t) \in X \times C, \quad t = 0, 1, 2, \dots$ (P0)
 $x_0 \in X$ given

• If you specify F(x,c) = u(c) and G(x,c) = x - c, you can immediately recover the infinite-horizon counterpart of cake-eating problem.

Cake-eating Example Reconsidered

- Go back to the cake-eating problem.
- Substituting the transition equation, $c_t = W_t W_{t+1}$, into $u(c_t)$, we can define the following function v:

$$v(W_t, W_{t+1}) \equiv u(W_t - W_{t+1})$$

• Then, the cake-eating problem is expressed more simply:

$$\max_{\{W_t\}_{t=1}^{\infty}} \sum_{t=0}^{\infty} \beta^t v(W_t, W_{t+1})$$

s.t. $W_{t+1} \in [0, W_t]$
 $W_0 = W$

Infinite-horizon Optimization Problem

• Hereafter, we assume that the problem (P0) can be expressed as the following reduced form:

$$\max_{\substack{x_t\}_{t=1}^{\infty}\\ \text{s.t.}} \quad \sum_{t=0}^{\infty} \beta^t f(x_t, x_{t+1})$$

s.t. $x_{t+1} \in \Gamma(x_t)$
 $x_0 \in X$ given (P)

・ロン ・四 と ・ ヨン ・ ヨン

where

- $f: X \times X \to \mathbb{R}$ is a reduced form of the one-period return function, generated from F and G;
- $\Gamma: X \to X$ is the correspondence, whose graph is

{

$$\{(x,y)\in X\times X\mid y\in \Gamma(x)\}\,.$$

Preliminary

- Given $x_t \in X$, a choice \tilde{x}_{t+1} is feasible if $\tilde{x}_{t+1} \in \Gamma(x_t)$.
- Given $x_0 \in X$, let

$$\Pi(x_0) = \{ \{x_t\}_{t=1}^{\infty} \mid x_{t+1} \in \Gamma(x_t) \forall t \in \mathbb{Z}_+ \}$$

Definition

Given $x_0 \in X$, any sequence $\{\tilde{x}_t\}_{t=1}^{\infty} \in \Pi(x_0)$ is called the feasible path (or plan) (実行可能経路).

Assumptions

Assumption

For all $x \in X$, $\Gamma(x)$ is nonempty.

Assumption

For all $x_0 \in X$ and $\{x_t\}_{t=1}^{\infty} \in \Pi(x_0)$, $\lim_{n\to\infty} \sum_{t=0}^n \beta^t f(x_t, x_{t+1})$ exists in \mathbb{R} .

(*) In Stokey and Lucas (1989, Ch. 4), the second assumption is relaxed so that the finite sum $\sum_{t=0}^{n} \beta^t f(x_t, x_{t+1})$ can diverge: i.e., they assume $\lim_{n\to\infty} \sum_{t=0}^{n} \beta^t f(x_t, x_{t+1})$ exists in $\mathbb{R} \cup \{+\infty, -\infty\}$.

Value Function

Definition (Value function)

The value function $V^*:X\to \mathbb{R}$ is defined as

$$V^{*}(x_{0}) = \max_{\{x_{t}\}_{t=1}^{\infty}} \left\{ \sum_{t=0}^{\infty} \beta^{t} f(x_{t}, x_{t+1}) \ \middle| \ x_{t+1} \in \Gamma(x_{t}) \forall t \in \mathbb{Z}_{+} \right\},$$
(1)

or more simply

$$V^*(x_0) = \max_{\{x_t\}_{t=1}^{\infty} \in \Pi(x_0)} \sum_{t=0}^{\infty} \beta^t f(x_t, x_{t+1}).$$
(1')

Definition (Bellman equation)

The following functional equation is called the Bellman equation (ベルマン方程式)

$$V(x) = \max_{x' \in \Gamma(x)} \left\{ f(x, x') + \beta V(x') \right\}.$$
 (2)

Principle of Optimality: Necessity

Theorem

The value function V^* defined in (1) satisfies the Bellman equation (2).

Proof.

Proof will be given in the supplementary materials.

Principle of Optimality: Sufficiency

Theorem

Given $x_0 \in X$, let $\{x_t^*\}_{t=1}^{\infty}$ denote the sequence generated by solving the Bellman equation (2). Suppose that $\{x_t^*\}_{t=1}^{\infty} \in \Pi(x_0)$ and the following boundary condition (境界条件) is satisfied:

$$\lim_{t \to \infty} \beta^t V(x_t^*) = 0.$$

Then, $\{x_t^*\}_{t=0}^{\infty}$ is the solution to the problem (1).

Proof.

Proof will be given in the supplementary materials.

<ロト <回 > < 回 > < 回 > < 回 >

Definition (Policy function)

 $h: X \to X$ is called the policy function (政策関数) if

$$h(x) = \arg \max_{x' \in \Gamma(x)} \{f(x, x') + \beta V(x')\}$$

Ryoji Ohdoi (Tokyo Tech)

イロト イヨト イヨト イヨト

(3)

How to Obtain V^*

- In summary,
 - From the first theorem, V^* satisfies the Bellman equation (2);
 - ► Note that (2) may have other solutions. However, the second theorem shows that as long as the boundary condition is satisfied, a solution to (2) is V*.
 - \Rightarrow We can focus on (2) instead of the original problem (P).
- Furthermore, if we can obtain the value function V^* from the Bellman equation, we can express the sequence $\{x_t^*\}_{t=1}^{\infty}$ in the following recursive form:

$$\forall x_0 \in X, \quad x_{t+1}^* = h(x_t^*), \quad t = 0, 1, 2, \dots$$
 (4)

```
How to Obtain V^*
```

• Conversely, we have to obtain the value function from the Bellman equation.

• How?

۰.

- Guess and verify (推測と確認)
- Value function iteration (価値観数の繰り返し計算)

Guess and Verify

- If we specify the functional form, we can obtain V^* by the method of guess and verify.
- If we specify $u(c) = \ln c$ in the infinite-horizon cake-eating problem on pp. 9, we get

$$V^{*}(W) = \frac{1}{1-\beta} \ln W + (1-\beta)^{-1} \left[\ln(1-\beta) + \frac{\beta}{1-\beta} \ln \beta \right]$$

We also obtain the policy function as $W' = \beta W$.

Value Function Iteration

 $\bullet\,$ Given any V, define T by

$$T(V)(x) = \max_{x' \in \Gamma(x)} \{ f(x, x') + \beta V(x') \}.$$
 (5)

T is called the Bellman operator.

- $T: C(X) \to C(X)$, where C(X) is a space of continuous function on X.
- At first, arbitrarily choose a function, say, V₀(x) ∈ C(X), and substitute this into the right-hand-side of (5) for V.
 ↓
- Then, in (5), the operator T gives the new function, say, $V_1(x).$ \Downarrow
- Substitute V_1 into the RHS of (5) for V.

۰.

Value Function Iteration

- Briefly speaking, the functional sequence, $\{V_j(x)\}_{j=0}^\infty$ is generated by the Bellman operator.
- Therefore, if $V_j(x)$ uniformly converges to $V^*(x)$, we can obtain the value function.

(*) In Theorem 4.6 of Stokey and Lucas (1989, Ch. 4), it is shown that the operator $T:C(X)\to C(X)$ is a contraction mapping, which in turn shows that

$$T(V^*) = V^*, \quad \lim_{j \to \infty} T^j(V_0) = V^* \forall V_0 \in C(X).$$

(Proof is omitted here) Then, V_j uniformly converges to V^* .

Euler Equation

• If V is differentiable, the problem given by the Bellman equation (2) has the following first-order-condition:

$$f_2(x, x') + \beta V_x(x') = 0,$$

where $f_2 = \partial f(x, x') / \partial x'$.

- Given V, the above condition gives the policy function implicitly, x' = h(x).
- Substituting back into the Bellman equation, we have

$$V(x) = f(x, h(x)) + \beta V(h(x)).$$
 (6)

Euler Equation

• Differentiating (6) with respect to x yields:

$$V_x(x) = f_1(x, x') + \underbrace{(f_2(x, x') + \beta V_x(x'))}_{=0 \text{ (envelop theorem)}} h'(x)$$
$$= f_1(x, x')$$

• Then, F.O.C is rewritten as

$$f_2(x, x') + \beta f_1(x', x'') = 0,$$

or, if we use the time script,

$$f_2(x_{t-1}, x_t) + \beta f_1(x_t, x_{t+1}) = 0.$$

イロン イロン イヨン イヨン

(7) is called the Euler equation (オイラー方程式).

(7)

Transversality Condition

- In the Euler equation (7), the unknown function V disappears.
- Therefore, the Euler equation is very useful, when we face the difficulty of finding V^* directly, but can verify V^* is differentiable.
- However, the Euler equation is *necessary* for maximization, but not sufficient.
 ↓
 The next theorem gives the sufficient conditions for the problem (P).

Transversality Condition

Theorem

Suppose that f(x, x') is increasing in x, concave and continuously differentiable in (x, x'). Then, given $x_0 \in X$, the sequence $\{x_t^*\}_{t=1}^{\infty} \in \Pi(x_0)$ is the solution to (P) if it satisfies the Euler equation (7), and

$$\lim_{t \to \infty} \beta^t f_1(x_t^*, x_{t+1}^*) x_t^* = 0.$$
(8)

イロト イポト イヨト イヨト

Proof.

Proof will be given in the supplementary materials.

(8) is the transversality condition (橫断性条件) in an infinite-horizon problem.