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Purpose of This Course

• Purpose: This course is aimed at providing students with standard methods
in modern dynamic macroeconomics.

• What is modern macroeconomics?

• Shortly speaking, it extends the Solow model by applying the dynamic
optimization techniques to endogenize households’ saving rate.
So, a knowledge of the Solow model is a prerequisite for this course.

• Office Hour: Room 636, Wednesdays 10:45–12:15.

(∗) If you want to meet with me at other times, appointment is required.

• E-mail address: ohdoi@soc.titech.ac.jp
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Grading Policy

• Grading Policy: The final grade is based on homework assignments (30%),
midterm- (30%) and final examinations (40%).

• The midterm and final exams are tentatively scheduled on

• June 3 (Midterm)
• July 29, or August 5 (yet to be finalized) (Final)
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Homework Assignments

• I will give you homework assignments X times, where the number of X is
TBA (4-5 times).

• If students submit an assignment by the due date, I will give them at most
30/X points. Therefore, if they submit all assignments with correct answers,
you will receive 30 points.

(∗) You can hand-in the assignments in the language whichever you prefer,
English or Japanese.
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Course Guideline

• Course Guideline

1 Dynamic Optimization (4 lectures incl. today)

2 The Ramsey-Cass-Koopmans Model (3 lectures)

3 Endogenous Growth Models (2 lectures)

4 Models of Time-inconsistent Preferences (Preference Reversals) (1-2 lectures)

5 Some Macroeconomic Applications of Stochastic Dynamic Programming (3
lectures)
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Plan of Lecutres in the Part of “Dynamic Optimziation”

• April, 8 (Wed) (Today): An introduction to dynamic optimization

• April, 15 (Wed): Infinite-horizon dynamic programming

• April, 22 (Wed): System of difference equations and its stability

• April, 30 (Thu): Continuous-time optimal control
(∗) Note the day of week, not the same as usual.
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Introduction: A Cake-eating Problem

• Suppose that you are present with a cake of size W > 0.

• In each period t (= 1, 2, 3, . . . , T ), you can eat some of the cake, and save
the rest.

• Let

• ct ≥ 0 be amount of your consumption in period t;

• u : R+ → R be your one-period utility function from ct;

• c = (c1, c2, . . . , cT ) ∈ RT
+.
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Your Preferences

• Your preferences are assumed to be given by the function U : RT
+ → R:

U(c) = u(c1) + βu(c2) + . . .+ βT−1u(cT )

=

T∑
t=1

βt−1u(ct),

where β ∈ (0, 1) is called the discount factor (割引因子).

• If one defines ρ > 0 such that

β ≡ 1

1 + ρ
.

ρ is called the discount rate (割引率).
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Optimization Problem

• Question: How do you decide your optimal plans of eating the cake?

• From the view point of microeconomic theory, the problem is formulated as
the utility maximization problem as follows:

max
c

T∑
t=1

βt−1u(ct),

s.t.
T∑

t=1

ct ≤ W,

ct ≥ 0 t = 1, 2, . . . , T.

(∗) From the above constraints, ct ≤ W automatically implies for all t.
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Optimization Problem

• Thus, in this simple example, there is no

• Trade in markets: you do not buy or sell the cake;

• Strategic interactions between you and other people: you do not need to share
the cake with any others.

• Instead, this example focus on your own intertemporal choice of
consumption, which gives the benchmark for the analysis of an individual’s
saving-consumption decision in macroeconomics.
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Optimization Problem

• Let D denote the constraint set (制約集合):

D =

{
c ∈ RT

+

∣∣∣ T∑
t=1

ct ≤ W

}

⇒ D is compact.

Assumption

U : RT
+ → R is a continuous function on D.

⇓

• The Weierstrass Theorem:
U attains a maximum (and a minimum) on D.
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Optimization Problem

• Exercise: Suppose that u(ct) = ct for all t = 1, 2, . . . , T . Then, show that U
is maximized at

c1 = W, c2 = c3 = . . . = cT = 0.
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Inequality-constrained Optimization

• The above problem is the inequality-constrained optimization problem.

• Hereafter, in addition to its continuity, we assume that u(c) is

1 continuously differentiable (a necessary number of times);

2 strictly increasing (u′(c) > 0);

3 strictly concave (u′′(c) < 0) ⇒ U(c) is strictly concave.

• Furthermore, we assume
lim
c→0

u′(c) = +∞,

which is called the Inada condition (稲田条件).
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Using the Theorem of Kuhn and Tucker: A “Cookbook”
Procedure

• Construct the following Lagrangian:

L(c, λ,µ) = U(c) + λ

(
W −

T∑
t=1

ct

)
+

T∑
t=1

µtct,

where
• λ: The KT multiplier associated with the constraint:

∑T
t=1 ct ≤ W ;

• µt: That associated with the constraint ct ≥ 0, and µ = (µ1, µ2, . . . , µT ).
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Using the Theorem of Kuhn and Tucker: A “Cookbook”
Procedure

• Then, derive the first order conditions (F.O.Cs):

βt−1u′(ct) + µt = λ, t = 1, 2, . . . , T, (1)

T∑
t=1

ct ≤ W, λ ≥ 0, λ

(
W −

T∑
t=1

ct

)
= 0, (2)

ct ≥ 0, µt ≥ 0, µtct = 0. (3)

• (2) and (3) are called the complementary slackness condition (相補性条件).

• Thanks to the concavity of U and the fact that D is a convex set, the above
F.O.Cs provide necessary and sufficient conditions for the maximization
problem.
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Solution

• Let c∗ denote the solution of the problem. Thanks to u′(c) > 0 for all c and
the Inada condition limc→0 u

′(c) = +∞, From (2) and (3), we have

T∑
t=1

c∗t = W, (4)

c∗t > 0 t = 1, 2, . . . , T. (5)
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Solution

• From c∗t > 0 and (3), µt = 0.

• Substituting this result into (1), we have

βt−1u′(c∗t ) = λ, t = 1, 2, . . . , T.

⇒ ct is obtained as c∗t = (u′)−1(λ/βt−1), where (u′)−1 is the inverse
function of u.

⇒ Substituting this result into (4),

T∑
t=1

βt−1 (u′)−1(λ/βt−1)︸ ︷︷ ︸
c∗t

= W.

Thus, by specifying the functional form of u, we can solve the above equation
for λ, which in turn determines the value of c∗t .
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Euler Equation

• Hereafter, we let the solution c∗ = (c∗1, c
∗
2, . . .) denote the optimal

consumption plan (最適消費計画).

• At the same time, we can readily obtain the following relationship:

βt−1u′(c∗t ) = λ, t = 1, 2, . . . , T,

⇒ u′(c∗t ) = βu′(c∗t+1), t = 1, 2, . . . , (6)

(6) is called the Euler equation (オイラー方程式).

• Economic meanings of the Euler equation will be discussed in the
Ramsey-Cass-Koopmans model.
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Reformulation of the Cake-eating Problem

• Let Wt denote the size of the leftover cake, which remains to be available for
you in period t;

W1 = W,

Wt < W t = 2, 3, . . . , T + 1.

• Then, the value of Wt changes over time according to the following law of
motion:

Wt+1 = Wt − ct. (7)

(7) is called the transition equation (推移方程式).
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Reformulation of the Cake-eating Problem

• Then, the cake-eating problem can be formulated also as

max U(c) =
T∑

t=1

βt−1u(ct)

s.t. Wt+1 = Wt − ct, t = 1, 2, . . . , T

WT+1 ≥ 0, W1 = W.

(∗) The inequality constraint, ct ≥ 0, is now omitted because we have
already known that it never binds owing to the Inada condition.

• WT+1 is amount of a leftover piece of cake in period T .

⇒
∑T

t=1 ct = W if and only if WT+1 = 0.

The above problem is called the optimal control problem (最適制御問題) in
discrete time.
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Optimal Control and Transversality Condition

• Once reset the meanings of notations, λ and µ, defined above.

• Construct the following Lagrangian :

L =

T∑
t=1

βt−1u(ct) +

T∑
t=1

λ̃t(Wt − ct −Wt+1) + µWT+1

=

T∑
t=1

βt−1 [u(ct) + λt(Wt − ct −Wt+1)] + µWT+1

where

• λt(= β−(t−1)λ̃t): The multiplier associated with the transition equation;
• µ: The KT multiplier associated with the constraint Wt+1 ≥ 0.

(∗) λt is called the costate variable (共役変数) in the context of control.
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Optimal Control and Transversality Condition

• Deriving the F.O.Cs, and arranging them,

u′(ct) = βu′(ct+1), (8)

WT+1 ≥ 0, λT ≥ 0, λTWT+1 = 0. (9)

• (8) is the Euler equation, while in (9), λTWT+1 is called the transversality
condition (横断性条件), TVC.

• The role of the Euler equation and the TVC will be examined again in the
part of continuous-tine optimal control.

Ryoji Ohdoi (Tokyo Tech) Advanced Macroeconomics: Dynamic Optimization April, 8, 2015 22 / 26



Advanced Macroeconomics: Dynamic Optimization

Recursive Feature of the Problem

• So far, we formulate the cake-eating problem in two different ways.

• Note that, in either case, you solved the problem in the initial period.

• Then, suppose that you stop and reconsider the problem in period, say, t0.
Then, your problem from then on is

max
T∑

t=t0

βt−t0u(ct)

s.t. Wt+1 = Wt − ct,

WT+1 ≥ 0, Wt0 given.

　⇒ You will solve essentially the same problem as you did in the initial
period.
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Recursive Feature of the Problem

• The dynamic programming technique, based on the Bellman’s principle of
optimality, utilizes such a property that the problem is recursively defined.

• Let

V (W1) = max
c

{
T∑

t=1

βt−1u(ct) : Wt+1 = Wt − ct, t = 1, 2, . . . T

}
,

where V : R+ → R is called the value function (価値関数). In the context of
economics, V is called the indirect utility function.
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Bellman Equation

• Briefly speaking, the principle of optimality means

V (W1) = max
c

{
T∑

t−1

βt−1u(ct) : Wt+1 = Wt − ct, t = 1, 2, . . . T

}
= max

c1
{u(c1) + βV (W2) : W2 = W1 − c1} . (10)

(10) is called the Bellman equation (ベルマン方程式).

• The dynamic programming technique, now widely used in macroeconomics,
solves the maximization problem by converting the original problem into a
two-period problem characterized in the Bellman equation.

(∗) Note that the value function in (10) is still to be determined. Thus, the
Bellman equation is a functional equation.
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Next Week

• Infinite-horizon dynamic programming with more general functional forms
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