2 Integration and Expectation

Expectation at Elementary Level:

X : A random variable

X is discrete $\Leftrightarrow X$ takes only a countable $\#$ of different values x_{1}, x_{2}, \ldots
X is absolutely continuous $\Leftrightarrow^{\exists} f: \mathbb{R} \rightarrow \mathbb{R}_{+}$(probability density function) s.t.

$$
0 \leq f(x)<\infty, \quad{ }^{\forall} x \in \mathbb{R}, \quad \mathrm{P}(X \leq x)=\int_{-\infty}^{x} f(s) \mathrm{d} s, \quad{ }^{\forall} x \in \mathbb{R}
$$

Def. 2.1 (Elementary Definition of Expectation)

The expectation $\mathrm{E}(X)$ of a random variable X is given by

$$
\mathrm{E}(X)= \begin{cases}\sum_{i=1}^{\infty} x_{i} \mathrm{P}\left(X=x_{i}\right) & X \text { is discrete } \\ \int x f(x) \mathrm{d} x & X \text { is absolutely continuous with density } f\end{cases}
$$

Question: How about more general cases?

- There exist random variables which are neither discrete nor continuous.
- Not all continuous random variables are absolutely continuous (but singular continuous).

Example 2.1 For $U \sim U[0,1], X=U \mathbf{1}_{U>1 / 2}$ is neither discrete nor continuous

Example 2.2 (Cantor-distributed random variable)

Let $C=\left\{x \in[0,1] \left\lvert\, x=\sum_{n=1}^{\infty} \frac{d_{n}}{3^{n}}\right., d_{n}=0\right.$ or $\left.2, n=1,2, \ldots\right\} \quad$ (Cantor set)

- C is a continuous set (C has the same cardinality as $[0,1]$)
- $\lambda(C)=0$

Let Y_{1}, Y_{2}, \ldots be i.i.d. random variables s.t. $\mathrm{P}\left(Y_{n}=0\right)=\mathrm{P}\left(Y_{n}=2\right)=\frac{1}{2}$ and let $Y=$ $\sum_{n=1}^{\infty} Y_{n} / 3^{n}$
$\Rightarrow Y$ takes values in C (Y is continuous), but has no density function since $\lambda(C)=0$ (singular continuous).

2.1 Definition of Lebesgue Integrals

- Expectation $=$ Lebesgue integral w.r.t. probability measure

$$
\mathrm{E}(X)=\int_{\Omega} X(\omega) \mathrm{P}(\mathrm{~d} \omega)
$$

- Define the Lebesgue integral in three steps.
$(\Omega, \mathcal{F}, \mu)$: Measure space
$h: \Omega \rightarrow \overline{\mathbb{R}}=[-\infty,+\infty]: \mathcal{F} / \mathcal{B}(\overline{\mathbb{R}})$-measurable function

Def. 2.2 (Integral of simple functions)

h is simple $\Leftrightarrow h$ takes only a finite $\#$ of distinct values $x_{1}, x_{2}, \ldots, x_{n}$ s.t.

$$
h(\omega)=\sum_{i=1}^{n} x_{i} \mathbf{1}_{A_{i}}(\omega), \quad \omega \in \Omega,
$$

where $A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{F}$ s.t. $\bigcup_{i=1}^{n} A_{i}=\Omega \& A_{i} \cap A_{j}=\emptyset(i \neq j)$
h is simple $\Rightarrow \quad \int_{\Omega} h(\omega) \mu(\mathrm{d} \omega)=\sum_{i=1}^{n} x_{i} \mu\left(A_{i}\right)$

Example 2.3 $A \in \mathcal{F}, \mathrm{E}\left(\mathbf{1}_{A}\right)=1 \times \mathrm{P}(A)+0 \times \mathrm{P}\left(A^{c}\right)=\mathrm{P}(A)$

Def. 2.3 (Integral of nonnegative functions)

$h \geq 0$ a.e.- $\mu \Rightarrow \quad \int_{\Omega} h(\omega) \mu(\mathrm{d} \omega)=\sup _{g \in \mathcal{S}_{h}} \int_{\Omega} g(\omega) \mu(\mathrm{d} \omega)$
where $\mathcal{S}_{h}=\{$ measurable and simple g s.t. $g \leq h$ a.e. $-\mu\}$

- For $A \in \mathcal{F}$, " A a.e. $-\mu$ " $\Leftrightarrow " \mu\left(A^{c}\right)=0$ " (almost everywhere w.r.t. measure μ)
- a.e.-P = a.s. (almost surely)

Remark 2.1 It is possible that $\int h \mathrm{~d} \mu=+\infty$

Def. 2.4 (Integral of general functions)

$$
\begin{aligned}
& h^{+}=h \mathbf{1}_{\{h \geq 0\}}= \max (h, 0) \& h^{-}=-h \mathbf{1}_{\{h<0\}}=-\min (h, 0) \\
&\left(h^{+} \geq 0 \& h^{-} \geq\right.0 \text { a.e. }-\mu) \Rightarrow \\
& \qquad \int_{\Omega} h(\omega) \mu(\mathrm{d} \omega)=\int_{\Omega} h^{+}(\omega) \mu(\mathrm{d} \omega)-\int_{\Omega} h^{-}(\omega) \mu(\mathrm{d} \omega)
\end{aligned}
$$

- $\int h^{+} \mathrm{d} \mu=\int h^{-} \mathrm{d} \mu=+\infty \Leftrightarrow \int h \mathrm{~d} \mu$ does not exist
- h is μ-integrable $\Leftrightarrow-\infty<\int h \mathrm{~d} \mu<\infty\left(\int h^{+} \mathrm{d} \mu<\infty \& \int h^{-} \mathrm{d} \mu<\infty\right)$

Properties of Integrals

i) $\int h \mathrm{~d} \mu$ exists $\Rightarrow{ }^{\forall} c \in \mathbb{R}, \int c h \mathrm{~d} \mu$ exists and $=c \int h \mathrm{~d} \mu$
ii) $h \leq g$ a.e.- $\mu \Rightarrow \int h \mathrm{~d} \mu \leq \int g \mathrm{~d} \mu$
iii) $\int h \mathrm{~d} \mu$ exists $\Rightarrow\left|\int h \mathrm{~d} \mu\right| \leq \int|h| \mathrm{d} \mu$

Remark 2.2 X is a r.v. either discrete or absolutely continuous with probability density function $f \Rightarrow$

$$
\int_{\Omega} X(\omega) \mathrm{P}(\mathrm{~d} \omega)= \begin{cases}\sum_{i=1}^{\infty} x_{i} \mathrm{P}\left(X=x_{i}\right), & X \text { is discrete } \\ \int^{x} x f(x) \mathrm{d} x, & X \text { is absolutely continuous with density } f\end{cases}
$$

Example 2.4 (X has density function f s.t. $f(x)=0, x<0, x>1$)

$$
\begin{aligned}
\int_{0}^{1} x f(x) \mathrm{d} x & =\sum_{i=0}^{n-1} \int_{i / n}^{(i+1) / n} x f(x) \mathrm{d} x \\
& \leq \sum_{i=0}^{n-1} \frac{i+1}{n} \mathrm{P}\left(\frac{i}{n} \leq X<\frac{i+1}{n}\right) \\
& =\sum_{i=0}^{n-1} \frac{i}{n} \mathrm{P}\left(\frac{i}{n} \leq X<\frac{i+1}{n}\right)+\frac{1}{n} \\
& =\mathrm{E}\left(\frac{\lfloor n X\rfloor}{n}\right)+\frac{1}{n} \\
& \leq \int_{\Omega} X(\omega) \mathrm{P}(\mathrm{~d} \omega)+\frac{1}{n}
\end{aligned}
$$

where the last inequality follows since $\lfloor n X\rfloor / n$ is simple. Thus, taking $n \rightarrow \infty$ yields

$$
\int_{0}^{1} x f(x) \mathrm{d} x \leq \int_{\Omega} X(\omega) \mathrm{P}(\mathrm{~d} \omega)
$$

On the other hand, since $1-X$ has the density function $g(x)=f(1-x)$,

$$
1-\int_{\Omega} X(\omega) \mathrm{P}(\mathrm{~d} \omega)=\int_{\Omega}(1-X(\omega)) \mathrm{P}(\mathrm{~d} \omega)
$$

$$
\begin{aligned}
& \geq \int_{0}^{1} x f(1-x) \mathrm{d} x \\
& =\int_{0}^{1}(1-x) f(x) \mathrm{d} x \\
& =1-\int_{0}^{1} x f(x) \mathrm{d} x .
\end{aligned}
$$

To show the general case, we use the monotone convergence theorem.

