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This course introduces several basic concepts of mathematical optimization, probability

and statistics, and is intended to provide key knowledge necessary for advanced study in

Mathematical and Computing Sciences.
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1 Probability Space Revisited

Def. 1.1� �
Probability Space (Ω,F ,P)

Ω: Sample space

Set of all possible outcomes (of a probabilistic phenomenon)

F : σ-Field (or σ-algebra) on Ω

Set of subsets of Ω on which probability is defined (detailed later)

(Ω,F): Measurable space

Event: An element of F

P: Probability measure on (Ω,F)

Set function from F to [0, 1] (detailed later)

P(A), A ∈ F : Probability of event A� �
Questions:

• Why is probability P set function?

(Can not we assign the probability to each element of Ω?)

• What is σ-field? Why is it necessary?

1.1 Discrete Probability Space

When Ω is a countable set; Ω = {ω1, ω2, . . .}, we can assign a probability value to each

element of Ω.

Def. 1.2 (Discrete Probability Space)� �
Probability (mass) function p: Ω → [0, 1] s.t.

∑
ω∈Ω

p(ω) = 1

F = 2Ω: Power set (set of all subsets) of Ω

P(A) =
∑
ω∈A

p(ω), A ∈ F

� �
Example 1.1 (Coin tosses) Ω = {ω1, ω2, . . .}
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ωi: 1st head appears at the ith toss.

p(ωi) =
(1
2

)i

, i = 1, 2, . . . , ⇒
∞∑
i=1

p(ωi) =
1/2

1− 1/2
= 1

A = {ω1, ω2, . . . , ωn} ⇒ Probability that 1st head appears in 1st n tosses.

A = {ω2, ω4, ω6, . . .} ⇒ Probability that 1st head appears in even tosses.

1.2 σ-Fields

If we want to assign probability values to elements of an uncountable sample space, e.g.,

Ω = [0, 1], we can only assign positive values to at most countable number of elements.

⇒ Probability is defined by assigning values to subsets of Ω.

Example 1.2 Ω = [0, 1], P([a, b]) = b− a for 0 ≤ a < b ≤ 1.

Question: On which set F of subsets, is probability P well defined?

(What is the domain of set function P?)

Requirements:

• Ω ∈ F (Probability is assigned to Ω itself)

• F is closed w.r.t. set operations (c, ∪, ∩)
A, B ∈ F ⇒ Ac ∈ F , A ∪B ∈ F , A ∩B ∈ F

σ-Fields satisfy these requirements.

Def. 1.3 (σ-Field or σ-Algebra)� �
Set of subsets F of Ω is a σ-field (or σ-algebra) on Ω ⇔

1. ∃A ⊂ Ω s.t. A ∈ F

2. A ∈ F ⇒ Ac ∈ F

3. A1, A2, . . . ∈ F ⇒
∪∞

i=1Ai ∈ F

(Ω, F): Measurable space� �
Properties of σ-fields I

i) Ω ∈ F , ∅ ∈ F

ii) A, B ∈ F ⇒ A ∪B, A ∩B, A \B (= A ∩Bc) ∈ F
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iii) A1, A2, . . . ∈ F ⇒
∞∩
i=1

Ai ∈ F

A σ-field is closed w.r.t. infinite set operations.

Question

Why should the domain of P be closed w.r.t. infinite set operations?

Example 1.3 X: Ω → R is a random variable ⇔

∀a ∈ R, {X ≤ a} = {ω ∈ Ω : X(ω) ≤ a} ∈ F (detailed later)

X, Y : Random variables ⇒ X + Y : Random variable?

{X + Y > a} =
+∞∪
n=1

+∞∪
m=−∞

{
X >

m

2n

}
∩
{
Y > a− m

2n

}
∈ F

If F would not be closed w.r.t. infinite set operations, X + Y could not be a random

variable.

Properties of σ-fields II

iv) σ-fields are not unique for a sample space Ω

Examples:

• F0 = {∅,Ω}

• FA = {∅, A,Ac,Ω} for a nonempty A ⊂ Ω

• F∗ = 2Ω = {all possible subsets of Ω} (power set)

v) For σ-fields F1, F2, F1 ∪ F2 may not be a σ-field

A, B ⊂ Ω (A ̸= B), A ∪B ̸∈ FA ∪ FB

Lem. 1.1 (Uncountable intersection of σ-fields)� �
X : An uncountable set

Fx, x ∈ X : A collection of σ-fields

⇒
∩

x∈X Fx is a σ-field� �
Lem. 1.2 (σ-Field generated by a given set of subsets)� �
A: Set of subsets of Ω

⇒ The smallest σ-field containing A (intersection of all σ-fields containing A), de-

noted by σ(A), can be constructed.� �
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Example 1.4 Ω = {a, b, c}. A = {{a, b}, {c}} is not a σ-field

⇒ σ(A) = {∅, {a, b}, {c}, {a, b, c}}.

1.3 Borel Fields

σ-Fields are not unique for a given Ω ⇒ Which σ-field should be chosen?

• Ω is countable ⇒ F = 2Ω (set of all subsets of Ω) is sufficient.

• Ω is uncountable ⇒ F = 2Ω is not good!

Example 1.5 (Vitali sets) Ω = [0, 1], α: an irrational number

1. Define an equivalence relation “∼” by

x ∼ y, x, y ∈ [0, 1] ⇔ ∃n ∈ Z s.t. y = x+ nα (mod 1)

2. Divide Ω = [0, 1] to (continuously infinite) equivalent classes by “∼” (each class is

a countable set)

3. Make a sequence of sets . . . , A−1, A0, A1, A2, . . . by

• A0 = {one representative from each equivalent class}

• An = {x+ nα (mod 1) | x ∈ A0}, n = ±1,±2, . . .

(Each An, n ∈ Z, is an uncountable set)

It is not possible to define the uniform distribution on (Ω, 2Ω)

(which should satisfy P(An) = constant, n ∈ Z, and
∑∞

n=−∞ P(An) = 1).

Def. 1.4 (Borel Field)� �
(E, d): Metric space

E: Set of all open subsets in E

Borel field B(E) on E: σ-field σ(E) generated by E
(smallest σ-field containing E)� �

Example 1.6 (Borel field on R)
B(R): σ-field generated by the set of all open intervals in R

• ∀a, b ∈ R (a < b), (a, b) ∈ B(R)
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• {a} =
∩∞

n=1

(
a− 1

n
, a+ 1

n

)
∈ B(R),

[a, b) = {a} ∪ (a, b) ∈ B(R), (a, b] = (a, b) ∪ {b} ∈ B(R),
[a, b] = [a, b) ∪ {b} ∈ B(R)

• (a,∞) =
∪∞

n=1(a, a+ n) ∈ B(R),
(−∞, a] = (a,+∞)c ∈ B(R), [a,∞) = {a} ∪ (a,∞) ∈ B(R),
(−∞, a) = [a,∞)c ∈ B(R)

Example 1.7 (Borel field on a function space)

D(R): Set of functions which are right-continuous with left limits on R

Borel field B(D(R)) is generated by the sets{
f ∈ D(R) | f(x1) ∈ (a1, b1), f(x2) ∈ (a2, b2), . . . , f(xn) ∈ (an, bn)

}
,

n ∈ Z, xi ∈ R,−∞ < ai < bi < +∞, i = 1, 2, . . . , n.
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