Fundamentals of Mathematical and
 Computing Sciences: Applied Mathematical Sciences

PART II: A Second Course in Probability

Naoto Miyoshi
Spring Semester, 2015
Friday, 13:20-14:50
Room W832
Evaluation by Reports

Outline of the Lecture

This course introduces several basic concepts of mathematical optimization, probability and statistics, and is intended to provide key knowledge necessary for advanced study in Mathematical and Computing Sciences.

References

[1] S. M. Ross and E. A. Peköz (2007). A Second Course in Probability. www.ProbabilityBookstore.com, Boston.
[2] A. Gut (2013). Probability: A Graduate Course, Second Edition. Springer, New York.

1 Probability Space Revisited

Def. 1.1
Probability Space $(\Omega, \mathcal{F}, \mathrm{P})$
Ω : Sample space
Set of all possible outcomes (of a probabilistic phenomenon)
$\mathcal{F}: \sigma$-Field (or σ-algebra) on Ω
Set of subsets of Ω on which probability is defined (detailed later)
(Ω, \mathcal{F}) : Measurable space
Event: An element of \mathcal{F}
P: Probability measure on (Ω, \mathcal{F})
Set function from \mathcal{F} to $[0,1]$ (detailed later)
$\mathrm{P}(A), A \in \mathcal{F}:$ Probability of event A

Questions:

- Why is probability P set function?
(Can not we assign the probability to each element of Ω ?)
- What is σ-field? Why is it necessary?

1.1 Discrete Probability Space

When Ω is a countable set; $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots\right\}$, we can assign a probability value to each element of Ω.

Def. 1.2 (Discrete Probability Space)

Probability (mass) function $p: \Omega \rightarrow[0,1]$ s.t. $\sum_{\omega \in \Omega} p(\omega)=1$
$\mathcal{F}=2^{\Omega}$: Power set (set of all subsets) of Ω

$$
\mathrm{P}(A)=\sum_{\omega \in A} p(\omega), \quad A \in \mathcal{F}
$$

Example 1.1 (Coin tosses) $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots\right\}$
ω_{i} : 1st head appears at the i th toss.

$$
p\left(\omega_{i}\right)=\left(\frac{1}{2}\right)^{i}, \quad i=1,2, \ldots, \quad \Rightarrow \quad \sum_{i=1}^{\infty} p\left(\omega_{i}\right)=\frac{1 / 2}{1-1 / 2}=1
$$

$A=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right\} \Rightarrow$ Probability that 1st head appears in 1st n tosses.
$A=\left\{\omega_{2}, \omega_{4}, \omega_{6}, \ldots\right\} \Rightarrow$ Probability that 1st head appears in even tosses.

$1.2 \quad \sigma$-Fields

If we want to assign probability values to elements of an uncountable sample space, e.g., $\Omega=[0,1]$, we can only assign positive values to at most countable number of elements. \Rightarrow Probability is defined by assigning values to subsets of Ω.

Example $1.2 \Omega=[0,1], \mathrm{P}([a, b])=b-a$ for $0 \leq a<b \leq 1$.

Question: On which set \mathcal{F} of subsets, is probability P well defined?
(What is the domain of set function P ?)

Requirements:

- $\Omega \in \mathcal{F}$ (Probability is assigned to Ω itself)
- \mathcal{F} is closed w.r.t. set operations $\left({ }^{c}, \cup, \cap\right)$
$A, B \in \mathcal{F} \Rightarrow A^{c} \in \mathcal{F}, A \cup B \in \mathcal{F}, A \cap B \in \mathcal{F}$
σ-Fields satisfy these requirements.
Def. 1.3 (σ-Field or σ-Algebra)
Set of subsets \mathcal{F} of Ω is a σ-field (or σ-algebra) on $\Omega \Leftrightarrow$

1. ${ }^{\exists} A \subset \Omega$ s.t. $A \in \mathcal{F}$
2. $A \in \mathcal{F} \Rightarrow A^{c} \in \mathcal{F}$
3. $A_{1}, A_{2}, \ldots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_{i} \in \mathcal{F}$

(Ω, \mathcal{F}) : Measurable space

Properties of σ-fields I

i) $\Omega \in \mathcal{F}, \emptyset \in \mathcal{F}$
ii) $A, B \in \mathcal{F} \Rightarrow A \cup B, A \cap B, A \backslash B\left(=A \cap B^{c}\right) \in \mathcal{F}$
iii) $A_{1}, A_{2}, \ldots \in \mathcal{F} \Rightarrow \bigcap_{i=1}^{\infty} A_{i} \in \mathcal{F}$

A σ-field is closed w.r.t. infinite set operations.

Question

Why should the domain of P be closed w.r.t. infinite set operations?
Example 1.3 $X: \Omega \rightarrow \mathbb{R}$ is a random variable \Leftrightarrow

$$
{ }^{\forall} a \in \mathbb{R}, \quad\{X \leq a\}=\{\omega \in \Omega: X(\omega) \leq a\} \in \mathcal{F} \quad \text { (detailed later) }
$$

X, Y : Random variables $\Rightarrow X+Y$: Random variable?

$$
\{X+Y>a\}=\bigcup_{n=1}^{+\infty} \bigcup_{m=-\infty}^{+\infty}\left\{X>\frac{m}{2^{n}}\right\} \cap\left\{Y>a-\frac{m}{2^{n}}\right\} \in \mathcal{F}
$$

If \mathcal{F} would not be closed w.r.t. infinite set operations, $X+Y$ could not be a random variable.

Properties of σ-fields II

iv) σ-fields are not unique for a sample space Ω Examples:

- $\mathcal{F}_{0}=\{\emptyset, \Omega\}$
- $\mathcal{F}_{A}=\left\{\emptyset, A, A^{c}, \Omega\right\}$ for a nonempty $A \subset \Omega$
- $\mathcal{F}_{*}=2^{\Omega}=\{$ all possible subsets of $\Omega\}$ (power set)
v) For σ-fields $\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{1} \cup \mathcal{F}_{2}$ may not be a σ-field
$A, B \subset \Omega(A \neq B), A \cup B \notin \mathcal{F}_{A} \cup \mathcal{F}_{B}$

Lem. 1.1 (Uncountable intersection of σ-fields)

\mathcal{X} : An uncountable set
$\mathcal{F}_{x}, x \in \mathcal{X}:$ A collection of σ-fields
$\Rightarrow \bigcap_{x \in \mathcal{X}} \mathcal{F}_{x}$ is a σ-field

Lem. 1.2 (σ-Field generated by a given set of subsets)

\mathcal{A} : Set of subsets of Ω
\Rightarrow The smallest σ-field containing \mathcal{A} (intersection of all σ-fields containing \mathcal{A}), denoted by $\sigma(\mathcal{A})$, can be constructed.

Example $1.4 \Omega=\{a, b, c\} . \mathcal{A}=\{\{a, b\},\{c\}\}$ is not a σ-field
$\Rightarrow \sigma(\mathcal{A})=\{\emptyset,\{a, b\},\{c\},\{a, b, c\}\}$.

1.3 Borel Fields

σ-Fields are not unique for a given $\Omega \Rightarrow$ Which σ-field should be chosen?

- Ω is countable $\Rightarrow \mathcal{F}=2^{\Omega}$ (set of all subsets of Ω) is sufficient.
- Ω is uncountable $\Rightarrow \mathcal{F}=2^{\Omega}$ is not good!

Example 1.5 (Vitali sets) $\Omega=[0,1], \alpha$: an irrational number

1. Define an equivalence relation " \sim " by

$$
x \sim y, \quad x, y \in[0,1] \quad \Leftrightarrow \quad{ }^{\exists} n \in \mathbb{Z} \text { s.t. } y=x+n \alpha(\bmod 1)
$$

2. Divide $\Omega=[0,1]$ to (continuously infinite) equivalent classes by " \sim " (each class is a countable set)
3. Make a sequence of sets $\ldots, A_{-1}, A_{0}, A_{1}, A_{2}, \ldots$ by

- $A_{0}=$ \{one representative from each equivalent class $\}$
- $A_{n}=\left\{x+n \alpha(\bmod 1) \mid x \in A_{0}\right\}, \quad n= \pm 1, \pm 2, \ldots$
(Each $A_{n}, n \in \mathbb{Z}$, is an uncountable set)
It is not possible to define the uniform distribution on $\left(\Omega, 2^{\Omega}\right)$
(which should satisfy $\mathrm{P}\left(A_{n}\right)=$ constant, $n \in \mathbb{Z}$, and $\sum_{n=-\infty}^{\infty} \mathrm{P}\left(A_{n}\right)=1$).

Def. 1.4 (Borel Field)

(E, d) : Metric space
$\mathcal{E}:$ Set of all open subsets in E
Borel field $\mathcal{B}(E)$ on E : σ-field $\sigma(\mathcal{E})$ generated by \mathcal{E} (smallest σ-field containing \mathcal{E})

Example 1.6 (Borel field on \mathbb{R})

$\mathcal{B}(\mathbb{R}): ~ \sigma$-field generated by the set of all open intervals in \mathbb{R}

- ${ }^{\forall} a, b \in \mathbb{R}(a<b),(a, b) \in \mathcal{B}(\mathbb{R})$
- $\{a\}=\bigcap_{n=1}^{\infty}\left(a-\frac{1}{n}, a+\frac{1}{n}\right) \in \mathcal{B}(\mathbb{R})$,

$$
\begin{aligned}
& {[a, b)=\{a\} \cup(a, b) \in \mathcal{B}(\mathbb{R}),(a, b]=(a, b) \cup\{b\} \in \mathcal{B}(\mathbb{R}),} \\
& {[a, b]=[a, b) \cup\{b\} \in \mathcal{B}(\mathbb{R})}
\end{aligned}
$$

- $(a, \infty)=\bigcup_{n=1}^{\infty}(a, a+n) \in \mathcal{B}(\mathbb{R})$,
$(-\infty, a]=(a,+\infty)^{c} \in \mathcal{B}(\mathbb{R}),[a, \infty)=\{a\} \cup(a, \infty) \in \mathcal{B}(\mathbb{R})$,
$(-\infty, a)=[a, \infty)^{c} \in \mathcal{B}(\mathbb{R})$

Example 1.7 (Borel field on a function space)

$D(\mathbb{R})$: Set of functions which are right-continuous with left limits on \mathbb{R}
Borel field $\mathcal{B}(D(\mathbb{R}))$ is generated by the sets

$$
\begin{gathered}
\left\{f \in D(\mathbb{R}) \mid f\left(x_{1}\right) \in\left(a_{1}, b_{1}\right), f\left(x_{2}\right) \in\left(a_{2}, b_{2}\right), \ldots, f\left(x_{n}\right) \in\left(a_{n}, b_{n}\right)\right\} \\
n \in \mathbb{Z}, x_{i} \in \mathbb{R},-\infty<a_{i}<b_{i}<+\infty, i=1,2, \ldots, n
\end{gathered}
$$

