
5 Polynomial Optimization Problem (POP)

Definition 5.1 Let R[x] denote the ring of real polynomials in the variables x = (x1, x2, . . . , xn).
A polynomial p ∈ R[x] is a sum of squares (s.o.s.) if p can be written in the following form:

p(x) =
∑
j∈J

pj(x)
2, x ∈ Rn

for some finite family of polynomials {pj |j ∈ J} ⊆ R[x]. Therefore, the degree of p is even and the
maximum degree of pj is half of it. We denote the set of all s.o.s. polynomials by Σ[x] ⊆ R[x].

For a multi-index α ∈ Nn, let |α| :=
∑n

i=1 αi. Denote by

vd(x) := (xα)|α|≤d := (1, x1, . . . , xn, x
2
1, x1x2, . . . , x

2
n, . . . , x

d
1, . . . , x

d
n)

T

the vector formed by all monomials xα of degree less or equal to d. This vector has dimension

s(d) :=

(
n+ d
d

)
. Those monomials also form the canonical basis of the vector space R[x]d of

polynomials of degree less or equal to d.

Proposition 5.2 A polynomial g ∈ R[x]2d has an s.o.s. decomposition if and only if there exists

Q ∈ Ss(d)
+ such that g(x) = vd(x)

TQvd(x) for all x ∈ Rn.

Proof:
g has an s.o.s decomposition ⇔ ∃k ∈ N and ∃U = (u1 u2 · · ·uk) ∈ Rs(d)×k such that g =∑k

i=1(u
T
i vd(x))

2 = vd(x)
TQvd(x) for Q = UUT .

Now, Q ∈ Ss(d)
+ is a Gram matrix ⇔ Q = UUT for some k ∈ N and U ∈ Rs(d)×k.

Example 5.3 g(x1, x2) = 2x41 + 2x31x2 − x21x
2
2 + 5x42 has an s.o.s. decomposition since

g(x1, x2) =

 x21
x22

x1x2

T  2 −3 1
−3 5 0
1 0 5

 x21
x22

x1x2


=

1√
2

1√
2

 x21
x22

x1x2

T  2 0
−3 1
1 3

(
2 −3 1
0 1 3

) x21
x22

x1x2


=

1

2
(2x21 − 3x22 + x1x2)

2 +
1

2
(x22 + 3x1x2)

2.

It is known that a non-negative multivariate polynomial over reals can be represented by a sum
of rational functions (Emil Artin 1927. It is known as Hilbert’ 17th Problem).

Of course, every s.o.s polynomial is a non-negative polynomial. On the other hand, the Motzkin
polynomial (1965) is an example of a non-negative polynomial which can not be written as an s.o.s.

p(x1, x2) = 1 + x21x
2
2(x

2
1 + x22 − 3)

Although this is true, it is also known that small perturbations of non-negative polynomials can be
approximated asymptotically by s.o.s. [Lasserre].

Now, suppose we want to find a minimum of a multivariate polynomial p ∈ R[x]2d of degree 2d.

(POP)

{
minimize p(x)
subject to x ∈ Rn
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This problem is equivalent to

(POP)


maximize λ
subject to p(x)− λ ≥ 0

λ ∈ R, ∀x ∈ Rn.

Since every s.o.s. polynomial is a non-negative polynomial, we can consider the following semidef-
inite program relaxation of this Polynomial Optimization Problem (POP):

(SOSd)

{
maximize λ
subject to p(x)− λ ∈ Σ[x]2d,

where Σ[x]d ⊆ R[x]d denotes the set of all s.o.s polynomials of degree d or less.
We will show now that (SOSd) is a semidefinite program.

By Proposition 5.2, ∃Q ∈ Ss(d)
+ such that p(x) =

∑
|α|≤2d

pαxα = vd(x)
TQvd(x) = ⟨Q,vd(x)vd(x)

T ⟩.

This means that for every α such that |α| ≤ 2d, pα =
∑

ij Qij , for appropriate indices i and j.

In conclusion, the condition p(x) − λ ∈ Σ[x]2d can be replaced by Q ∈ Ss(d)
+ and

∑
ij Qij =

pα (|α| ≤ 2d), which turns (SOSd) a semidefinite program.

(SOSd)


maximize p(0)−Q11

subject to
∑

ij Qij = pα, |α| ≤ 2d

Q ∈ Ss(d)
+

As a consequence:
(SOSd) ≤ (SOSd+1) ≤ . . . ≤ p∗,

where p∗ is the optimal value of (POP).
Of course, as d increases, the size of the semidefinite program increases, turning the problem

hard (or even impossible) to solve numerically. Also solving (SOSd), we can only obtain a lower
bound for the optimal value p∗ of (POP). To obtain also an approximate solution, it is necessary
to solve its dual problem which has an interpretation as an optimization problem over the moment
(matrix).

It is also possible to extend POP for polynomially constrained problems:{
minimize p(x)
subject to x ∈ K,

where K := {x ∈ Rn | gi(x) ≥ 0, i = 1, 2, . . . ,m} is a closed basic semi-algebraic set which
additionally needs to be assumed to be a bounded set. See [Lasserre] for details.

6 Second-Order Cone Program Relaxation

Any quadratically constrained quadratic program can be written w.l.o.g in the form:{
minimize cTx
subject to xTQix+ 2qTi x+ γi ≤ 0, i = 1, 2, . . . ,m.

(10)

Observe that

xT
i Qix+ 2qTi x+ γi =

⟨(
γi qTi
qi Qi

)
,

(
1 xT

x xxT

)⟩
(i = 1, 2, . . . ,m)
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Similar to the max-cut problem, introducing the new variable X ∈ Rn×n, the condition X −
xxT = O can be replaced by X − xxT ∈ Sn

+, which in turn is equivalent to the condition(
1 xT

x X

)
∈ Sn+1

+ .

Therefore, we can obtain the following semidefinite program relaxation of (10).
minimize cTx

subject to

⟨(
γi qTi
qi Qi

)
,

(
1 xT

x X

)⟩
≤ 0, i = 1, 2, . . . ,m(

1 xT

x X

)
∈ Sn+1

+ .

(11)

In general, the above semidefinite problem relaxation of (10) is better than the RLT (Reformulation
Linearization Technique) on the same problem in the sense that it gives a better lower bound for
the objective function.

Now, since Sn
+ is a self-dual cone, we can say that

Y ∈ Sn
+ ⇔ ⟨C,Y ⟩ ≥ 0, ∀C ∈ Sn

+.

Therefore, if we choose ℓ matrices Cj ∈ Sn
+ (j = 1, 2, . . . , ℓ) and replace the condition

X − xxT ∈ Sn
+ by ⟨Cj ,X − xxT ⟩ ≥ 0, we will have a further relaxation of (11).

minimize cTx

subject to

⟨(
γi qTi
qi Qi

)
,

(
1 xT

x X

)⟩
≤ 0, i = 1, 2, . . . ,m

xTCjx− ⟨Cj ,X⟩ ≤ 0, j = 1, 2, . . . , ℓ

(12)

The advantage of (12) over (11) is that the former is a second-order cone program (SOCP)
instead of semidefinite program (SDP). The SOCP is extremely cheap in terms of computational
cost (but not cheaper than linear program).

For instance, if Qi ̸∈ Sn
+, we will have Qi =

n∑
k=1

λikuiku
T
ik with λi1 ≥ λi2 ≥ λisi ≥ 0 > λi,si+1 ≥

. . . ≥ λin. Therefore, Ci =

si∑
k=1

λikuiku
T
ik −

n∑
k=si+1

λikuiku
T
ik ∈ Sn

+ will be a good candidate for (12).

Further, since Ci ∈ Sn
+, it also can be written as Ci = LiL

T
i .

The next lemma will be useful for further discussion.

Lemma 6.1 Given w ∈ Rn, η, ζ ∈ R,

wTw ≤ ηζ, and η ≥ 0, ζ ≥ 0 ⇔
∥∥∥∥( η − ζ

2w

)∥∥∥∥
2

≤ η + ζ

Proof:

4wwT ≤ 4ηζ ⇔ (η − ζ)2 + 4wwT ≤ (η + ζ)2

Finally, using Lemma 6.1, we obtain the following second-order cone program relaxation of (10).

minimize cTx

subject to

⟨(
γi qTi
qi Qi

)
,

(
1 xT

x X

)⟩
≤ 0, i = 1, 2, . . . ,m ⟨Cj ,X⟩+ 1

⟨Cj ,X⟩ − 1

2LT
i x

 ∈ Qn+2
+ , i = 1, 2, . . . ,m
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where Qn
+ = {x ∈ Rn | x21 ≥

∑n−1
i=2 x2i }.
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