

maximize

1

4
⟨W ,E −X⟩

subject to Xii = 1 i = 1, 2, . . . , n,
X ∈ Sn

+,
rank(X) = 1,

where E is the matrix with all elements equal to one.
Neglecting the condition rank(X) = 1, we obtain the following semidefinite program relaxation

of the max-cut problem: 
maximize

1

4
⟨W ,E −X⟩

subject to Xii = 1 i = 1, 2, . . . , n,
X ∈ Sn

+.

(7)

It is clear that

[sdp max-cut] ≥ [opt. max-cut],

where “sdp max-cut” is the optimal value obtained by solving (7).
The following randomized algorithm proposed by Goemans and Williamson in 19953 gives an

extraordinary bound for the max-cut problem.
In (7), it is optimal solutionX belongs to Sn

+, and therefore, it is a Grammatrix and ∃v1,v2, . . . ,vn ∈
Rℓ such that

Xij = ⟨vi,vj⟩ (i, j = 1, 2, . . . , n).

Moreover, since Xii = 1, ∥vi∥ = 1. Such n vectors can be obtained using the eigenvalue decomposi-
tion for instance. Once we have determined vi (i = 1, 2, . . . , n), we execute the following random
algorithm.

Set maxcut:= −∞.
For k := 1 to MAX
Choose a vector v ∈ Rℓ uniformly distributed in Sℓ−1 := {x ∈ Rℓ | ∥x∥2 = 1}.
Define a cut Sk ⊆ V consisting of i with ⟨v,vi⟩ ≥ 0 (i = 1, 2, . . . , n).
Compute δw(Sk).
If δw(Sk) > maxcut,
then maxcut:= δw(Sk).

Theorem 4.1 (Goemans-Williamson (1995)) The above algorithm provides the following ex-
pectation bound:

E[rand sdp] ≥ 0.8785[sdp max-cut] ≥ 0.8785[opt. max-cut].

Proof:
First, let us compute the probability of an edge (i, j) ⊆ E being selected by the above procedure.
Figure 2 shows the plane defined by the vectors vi and vj , and also its slice of Sℓ−1. We can see

from Figure 2, that since ∥vi∥ = ∥vj∥ = 1, the probability of ⟨v,vi⟩ and ⟨v,vj⟩ have opposite signs

is
arccos(Xij)

π . Recall that Xij = ⟨vi,vj⟩ = ∥vi∥2∥vj∥2 cos θ. Also |Xij | ≤ 1 (i, j = 1, 2, . . . , n) by
Exercise 3.

3M. X. Goemans and D. P. Williamson, “Improved approximation algorithms for maximum cut and satisfiability
problems using semidefinite programming,” J. Assoc. Comput. Mach., 42 (1995), pp. 1115–1145.
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Figure 2: Plane defined by the vectors vi and vj , the angle θ between them, and its slice of Sℓ−1.

Therefore, the expectation of the capacity which can be obtained by the algorithm is:

E[rand sdp] =
n∑

i,j=1

wij

2

arccos(Xij)

π
≥

n∑
i,j=1

wij

2

α

2
(1−Xij)

= α
n∑

i,j=1

wij

4
(1−Xij) = α[sdp max-cut] ≥ α[opt. max-cut],

for α = 0.8785.
Now, it remains to show that

arccos(x)

π
≥ α

2
(1− x) ∀x ∈ [−1, 1].

This can be seen if we plot their values for x ∈ [−1, 1] as in Figure 3.

It is reported that actual numerical experiments give an approximation better than 0.9 of the
optimal value. On the other hand, it is also known that the theoretical expectation can not be
better than the bound 16/17 ≈ 0.9412. 4

4.4 Extension to the Maximization of a Convex Quadratic Function

The ideia of Goemans-Williamson approach can be extended to the following problem.{
maximize xTQx
subject to x ∈ {−1, 1}n (8)

We can assume without loss of generality that the matrix Q ∈ Rn×n is symmetric, positive
semidefinite, and diagonally dominant, i.e., Qii ≥

∑n
j ̸=i |Qij |. See Exercise 2.

Again, a semidefinite program relaxation of it will be:

4J. H̊astad, “Some optimal inapproximability results,” J. Assoc. Comput. Mach., 48 (2001), pp. 798–859.
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Figure 3: Function values for arccos(x)
π , α

2 (1− x), and (1−x)
2 for x ∈ [−1, 1].


maximize ⟨Q,X⟩
subject to Xii = 1, i = 1, 2, . . . , n

X ∈ Sn
+

(9)

The following result is given by Nesterov5.

Theorem 4.2 (Nesterov) For Q ∈ Sn
+ in (8), we have

[sdp qp] ≥ [opt. qp] ≥ 2

π
[sdp qp] (

2

π
= 0.6366...)

where “sdp qp.” is the optimal value of (9) and “opt. qp.” is the optimal value of (8).

Proof:
The first inequality is obvious because (9) is an SDP relaxation of (8). Similar to the proof of

Goemans-Williamson’s result, let X ∈ Sn
+ be any feasible solution of (9) and v1,v2, . . . ,vn ∈ Rℓ

such that Xij = ⟨vi,vj⟩. We chose a vector v uniformly distributed in Sℓ−1, and define a vector
x ∈ Rn by the following process. Its elements will be equal to sign(⟨v,vi⟩) for i = 1, 2, . . . , n. It is
clear that x is feasible for (8). The expectation of the objective function calculated for this random
variable is:

o :=
n∑

i,j=1

QijEv[sign(⟨v,vi⟩)sign(⟨v,vj⟩)].

The probability of xi and xj have the same sign is
π−arccos(⟨vi,vj⟩)

π and opposite signs
arccos(⟨vi,vj⟩)

π
(see Figure 2). Therefore,

o =

n∑
i,j=1

Qij

(
π − arccos(⟨vi,vj⟩)

π
− arccos(⟨vi,vj⟩)

π

)
5Yu. Nesterov, “Quality of semidefinite relaxation for nonconvex quadratic optimization,” CORE Discussion

Paper, 1997.
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=
n∑

i,j=1

Qij
2

π

(π
2
− arccos(⟨vi,vj⟩)

)
=

n∑
i,j=1

Qij
2

π
arcsin(⟨vi,vj⟩) =

2

π

n∑
i,j=1

Qijarcsin(Xij).

Since this value is just the expected value, and X is any feasible solution of (9), we have in fact
that

[opt. qp] ≥ 2

π
max{⟨Q, arcsin(X)⟩ | X ∈ Sn

+, Xii = 1 (i = 1, 2, . . . , n)},

where arcsin(X) is the matrix with elements equal to arcsin(Xij). Finally, since Q ∈ Sn
+, Xii = 1

and X ∈ Sn
+, by Lemma 4.3, ⟨Q, arcsin(X)−X⟩ ≥ 0, and therefore

[opt. qp] ≥ 2

π
max{⟨Q,X⟩ | X ∈ Sn

+, Xii = 1 (i = 1, 2, . . . , n)} =
2

π
[sdp qp].

Lemma 4.3 Let X ∈ Sn
+ with diagonal elements equal to one. Then,

arcsin(X)−X ∈ Sn
+.

Proof: Since the diagonal elements of X are all ones, by Exercise 3, |Xij | ≤ 1 (i, j =
1, 2, . . . , n). Then the following Taylor expansion converges for all elements of X which are in
[−1, 1].

arcsin(X)−X =
∞∑
k=1

1 · 3 · 5 · (2k − 1)

2kk!(2k + 1)
X2k+1,

where Xk denotes the matrix with the elements equal to Xk
ij . Since the Hadamar product of

positive semidefinite matrices is positive semidefinite, the right hand side of the above equation
is positive semidefinite and the result follows.

Corollary 4.4 In fact, the result of Theorem 4.1 can be refined to

[sdp max-cut] ≥ [opt. max-cut] ≥ E[rand sdp] ≥ 0.8785[sdp max-cut] ≥ 0.8785[opt. max-cut].

4.5 Exercises

1. Suppose that we have a graph with positive and negative weights and we want to find its
maximum cut. We can think to reduce this problem for a maximum cut problem with non-
negative-weights adding a positive constant to all weights of the original graph. Show and
explain by constructing an example that a cut corresponding to the maximum cut for a non-
negative-weighted graph does not necessary corresponds to the maximum cut for the same
graph with positive and negative weights (in the conditions mentioned previously).

2. Show that for problem (8), one can always assume that Q ∈ Rn×n is symmetric, positive
semidefinite, and diagonally dominant, i.e., Qii ≥

∑n
j ̸=i |Qij |.

3. Show that for X ∈ Sn
+ and all diagonal elements equal to one we have |Xij | ≤ 1 (i, j =

1, 2, . . . , n).
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